摘要:
A variable sweep winglet with a negative dihedral angle is provided for a ground effect vehicle. The winglet is positionable at a sweep angle to control the winglet tip clearance from ground. Variable winglet tip clearance reduces the risk of damage or instability due to collision with the ground or water, thereby permitting more efficient flight at lower altitude with an equivalent safety. The winglet is generally positioned by an actuator. The actuator is controlled by a flight control system, or by other manual or automatic systems. A sensor may also be included for determining whether an object lies in the path of the winglet. The sensor communicates with the flight control system in order to vary the sweep of the winglet to increase clearance from the ground or water, thus avoiding impact with the object.
摘要:
The invention relates to a hinge for movable control surfaces in an aircraft. The hinge comprises two hinge lugs placed at a distance from one another. The hinge lugs include connecting lugs with an elongated connecting piece therebetween. An actuator is connected to the connecting piece conveying the force by means of fastening lugs to the hinge and further onto the control surface. The connecting piece is pivoted to the connecting lugs so that it can revolve about its longitudinal axis when moving the control surface. The invention also relates to a connecting piece intended to be used with a hinge like the one described above. The connecting piece is an elongated element including journals at both ends from where the connecting piece is rotatably pivoted about its longitudinal axis between the connecting lugs on the hinge. A middle portion of the connecting piece between the journals is flat and tapers towards the journals.
摘要:
The aircraft (20,50,60) combines a low aspect ratio lifting body (21) and a higher aspect ratio wing (30). Horizontal and vertical tail surfaces (26, 24) are connected to the rear of the lifting body (21) by one or more booms (23). The wing (30) is attached to the lifting body (21) such that it can be rotated about a spanwise axis (39) and it's aerodynamic center is located behind the aerodynamic center of the lifting body (21). The wing (30) contains adjustable surfaces (31, 32) to change the wing's camber for lift and roll control. A lever arrangement (FIG. 7) controlled by the pilot or remote control operator selectively and relatively pivots the wing (30) and contours the wing surfaces for camber to optimize the lift and control of the lifting body (21) and the wing (30) for maximum efficiency in all flight modes.
摘要:
A compact, aerodynamic wing assembly constructed and arranged so as to withstand a force due to acceleration in at least one direction includes at least two wing segments, each of the wing segments having a span-wise axis, and a airfoil cross section normal to the span axis. The wing segments are preferably disposed mutually adjacent and end to end. For each pair of wing segments, the wing further includes a pivot assembly fixedly attached to the wing segments at an end of each of the wing segments along the span-wise axis. The pivot assembly forms an articulation axis for relative movement between each the pair of wing segments, such that the wing assembly converts, upon a predetermined stimulus, from a stowed configuration characterized by nested wing segments, to a deployed configuration characterized by a substantially uninterrupted aerodynamic surface. The wing assembly is preferably constructed and arranged to withstand forces due to acceleration in at least two directions, including 15,000 g's forward and 4,000 g's rebound accelerations. The invention further comprises a flying structure constructed and arranged so as to withstand an acceleration force directed along a main axis. The flying structure includes a body disposed about the main axis, and at least one wing assembly pivotally mounted to the body. The wing assembly is constructed and arranged so as to convert, upon a predetermined stimulus, from a stowed configuration characterized by nested wing segments, to a deployed configuration characterized by a substantially uninterrupted aerodynamic surface.
摘要:
A spacecraft such as a fly back booster or a reusable launch vehicle, or an aerospace plane has a fuselage and a set of scissors wings consisting of two main wings. Both of the main wings are rotatably mounted on the fuselage and can be yawed at opposite directions. If the spacecraft is launched vertically, both of its main wings can be yawed to be generally parallel with its fuselage so that it can connect with other vehicle or vehicles to form different launch configurations. When the spacecraft or aerospace plane is flying in the air, landing, or taking off horizontally, it can yaw both of its main wings in opposite directions to maximize its lift-to-drag ratio by optimizing the yaw angle of the main wings according to flying conditions. It can also produce desired aerodynamic characteristics such as forming a high drag configuration by adjusting the yaw angle of its main wings. The scissors wings can be used on a spacecraft that is launched vertically on the ground, or a spacecraft that is carried to the air and launched in the mid-air, or a spacecraft that takes off horizontally like an aircraft or glider. The scissors wings can also be used on an aerospace plane.
摘要:
An air vehicle, such as an aircraft, an unmanned air vehicle, a missile, or an aero bomb that has a fuselage and two main wings each of which has a left side wing and a right side wing. Both of the main wings are rotatably mounted on the fuselage via one or two pivots or hollow turrets so that both of them can be yawed during flight to optimize flying efficiency under various flying conditions.
摘要:
A device (22) fitted with ribs is placed on a cylindrical rod (20) so that it is fixed to it in bending. The device (22) is formed of at least three ribs connected to each other at their ends, and at least one pair of elements in the form of a star connecting the ribs together, at least close to its central region. This device enables the rod (20) to apply an approximately radial force to the center of the rod through an actuator onto webs (24) bearing on its ends, minimizing the mass for a given spacing of the webs (24). The device is particularly applicable to the control of aircraft control surfaces.
摘要:
An airplane 1 with a spiral inducing assembly 2 which is capable of inducing the airplane to travel in a continuous spiralling motion without the airplane rolling. Two fins 6 and 17 are attached to a tube 3 that is able to rotate around the encircled part of the fuselage. The fins 6, 17 are able to rotate in a pivoting manner on the rotatable tube 3 with respect to the rotatable tube 3, thereby changing their pitch relative to the longitudinal axis of the rotatable tube 3. Fin 6 is larger than fin 17. The difference in sizes between the fins makes the larger fin 6 exert a greater force on the rotatable tube 3 than the smaller fin 17 when the fins are pitched in unison. The aerodynamic imbalance between the fins thus causes the rotatable tube 3 to rotate. When pitched at an angle to the longitudinal axis in unison, both fins 6, 17 would exert a lateral force on the rotatable tube 3. Thus, as well as forcing the rotatable tube 3 to rotate, the fins 6, 17 would also push the rotatable tube sideways. But as the rotatable tube is pushed sideways, it rotates, and hence the lateral direction of push constantly revolves, causing a spiralling motion of the airplane when in flight.
摘要:
An air vehicle having an elongated body structure, which has an aft portion and an arch wing device that is coupled to the aft portion of the body structure. The arch wing device includes a lower wing, which has a swept back leading edge and a swept back trailing edge, an upper wing, which has a swept back leading edge and a swept back trailing edge, and a pair of interconnecting portions that couple each of the opposite outboard lateral edges of the upper wing to an associated outboard lateral edge of the lower wing.
摘要:
The present invention provides an unmanned airborne reconnaissance vehicle having a fuselage, a forward wing pair and a rearward wing pair vertically separated by a gap and staggered fore and aft therebetween such that a general biplane configuration is formed. The present invention provides a pair of wing tip plates for joining the wing tips of the forward and rearward wings. The unmanned airborne reconnaissance vehicle of the present invention includes a power plant to propel the vehicle through the air and a generally T-shaped tail having a vertical stabilizer including a rudder and a full span elevator.