Abstract:
In a wave gear device, similarity curve tooth profiles for defining the tooth-face tooth profile of each of a flexible externally toothed gear and a rigid internally toothed gear is determined from the movement trajectory, relative to a tooth of the rigid internally toothed gear, of a tooth of the flexible externally toothed gear at a main cross-section at which the deflection factor is κ=1. Tooth profile curves, which have been subjected to profile shifting corresponding to the difference between the deflection factor κo (>1) of the opening-end cross-section of the flexible externally toothed gear and the deflection factor κ of the main cross-section, are determined from the similarity curves; and the tooth profile curves are used to form the tooth-face tooth profile portions of the two gears. High-gear-tooth compound tooth profiles, defined from the tooth-face tooth profile portions, straight-line tooth profile portions continuing from the tooth-face tooth profile portions, and appropriate tooth-flank tooth profile portions for avoiding interference are used as tooth profiles of the internal teeth and the external teeth. Also, taking coning of the flexible externally toothed gear into account, negative profile shifting is applied from an opening-end cross-section to an inner-end cross-section of the flexible externally toothed gear, and rational meshing between the two gears is obtained along the entire tooth trace.
Abstract:
A latching fitting for a vehicle seat for releasably locking a first part and a second part that are movable with respect to each other, particularly for adjusting and locking a backrest part with respect to a seat part of the vehicle seat, includes a pawl connected to the first part. The pawl is pivotable about a pawl bearing and includes a latching toothing which in a locked state of the latching fitting engages into a counter latching toothing of a locking piece connected to the second part. The latching toothing of the pawl and the counter latching toothing of the locking piece include different tooth shapes along the radial direction, such as a trapezoid shape and a triangle shape corresponding to each other.
Abstract:
In a flat wave gear device in which a flexible externally toothed gear and the rigid internally toothed gear have the same number of teeth, an arcuate tooth profile is imparted to a flexible externally toothed gear, a contact point C between tooth profiles of a flexible externally toothed gear and a D-side rigid internally toothed gear is determined from an arc center A of the arcuate tooth profile of the flexible externally toothed gear and from a momentary center S of relative movement between the gears, and a main part of a tooth profile to be formed in the D-side rigid internally toothed gear is calculated based on the contact point. The tooth profile of the D-side rigid internally toothed gear can be accurately designed; therefore, meshing between the gears can occur with zero backlash, ratcheting torque can be increased, and continuous meshing can occur across a wide range of the movement locus of the tooth profiles of both gears. The load capability of the flat wave gear device can accordingly be increased.
Abstract:
There are provided a resin double helical gear capable of reducing operation noises and vibrations of an ink jet printer, and a gear train for an ink jet printer using the same. The gear train 2 for an ink jet printer 1 includes an output gear 5 of a motor 3, a first idle gear 6 meshing with the output gear 5, a second idle gear 7 rotatable with the first idle gear 6, and a driven gear 8 which is mounted on a roller shaft 13 so as to be rotatable therewith and which meshes with the second idle gear 7, wherein a resin double helical gear 101 is used as each of the output gear and the first idle gear, and a spur gear is used as each of the second idle gear and the driven gear. The resin double helical gear may have a meshing relief portion 113 by cutting a chevron-shaped top portion 104 in a central portion 103 in face width directions, which is arranged in a butt portion 113 between a first die 108 and a second die 110, from a tooth crest to a portion near a bottom land so as to decrease a tooth thickness.
Abstract:
The invention relates generally to robotically controlled systems, such as medical robotic systems. In one variation, a robotic catheter system is configured with a sterile barrier capable for transmitting a rotary force from a drive system on one side of the barrier to surgical tool on the other side of the sterile barrier for performing minimally invasive diagnostic and therapeutic procedures. Modularized drive systems for robotics arc also disclosed herein.
Abstract:
In a flat wave gear device, there is determined a rack-approximated movement locus Lc1 of a flexible externally toothed gear with respect to an S-side rigid internally toothed gear accompanying rotation of a wave generator, ρOPT is a minimum value of the radius of curvature of the movement locus Lc1, and is determined from an evolute e of the movement locus Lc1. A convex arc having a radius ρ (ρ≦ρOPT) is used in a main part of a tooth profile of the flexible externally toothed gear. A parallel curve c that is set apart from a movement locus Lc2 by the arc radius ρ is used on a main part of a tooth profile to be generated on the S-side rigid internally toothed gear. The movement locus Lc2 accounts for the actual number of teeth, and is obtained from a center A of a convex arc of the flexible externally toothed gear being drawn with respect to the rigid internally toothed gear. In a flat wave gear device that is provided with a flexible externally toothed gear having a non-positive deflection (κ≦1) tooth profile, a tooth depth of the flexible externally toothed gear can be increased, whereby ratcheting torque is increased and meshing can occur continuously over an entire range of a movement locus; and a load capacity of the flat wave gear device is increased.
Abstract:
A flat type wave gear device is realized having a much improved load capacity. When d is an amount of radial flexing at a major axis location of a rim neutral circle of the flexible external gear of a flat type wave gear device flexed into an elliptical shape and t is the rim thickness of the flexible external gear, then (0.5237 Ln(R)−1.32)d≦t≦(0.8728 Ln(R)−2.2)d when the reduction ratio R of the wave gear device is less than 80, and (1.5499 Ln(R)−5.8099)d≦t≦(2.5832 Ln(R)−9.6832)d when the reduction ratio R of the wave gear device is 80 or more. Using this setting makes it possible to increase the tooth root fatigue limit strength of the flexible external gear, thereby making it possible to improve the load capacity of the flexible external gear.
Abstract:
In a system for coupling a toothed starter ring to a support connected to the output shaft of an internal combustion engine, a complementary substantially cylindrical peripheral surface of the ring is fixed over at least a part of its extent to a substantially cylindrical peripheral surface of the support in such a manner that the ring can deform slightly in the radial direction toward the shaft to reduce the maximum stresses exerted on the ring during a starting operation.
Abstract:
In a transmission having a silent chain meshing with a sprocket, each link plate of the chain includes inside engaging surfaces and outside engaging surfaces having the same shape as that of a tooth profile of a hob cutter for shaping the sprocket teeth. The sprocket, which engages the outside engaging surfaces of the link plates when the chain is seated on the sprocket teeth, includes tooth head portions shaped to avoid contact interference with inwardly curved portions of the link plates. The silent chain transmission device controls the engagement time of the inside engaging surface, and thereby decrease vibration noise and impact noise, and prevents stress concentration and wear loss on the inside engaging surface, the inwardly curved inside portion of the link plate, and the tooth head portion of the sprocket, thereby improving durability making assembly easier, and improving production accuracy.
Abstract:
In a very simple production and assembly process, reliable stop absorption between a drive-side gear wheel (1) and a driven-side carrier (2) is obtained when there is a mutual relative movement between the gear wheel (1) and the carrier (2) that is caused by the stop. To this end, a cam (2.1) of the carrier (2) elastically deforms a spring element (1.1) of the gear wheel (1) via a tangential stop bevel (1.11; 1.12). The gear wheel (1) and the carrier (2) are preferably configured as injection molded parts, which are axially spaced and interconnected when produced and assembled and which can be axially fit together by releasing or breaking the connection.