Abstract:
The present invention is an improved drive system for a personal vehicle comprising: a frame with a steerable front wheel and rear wheel connected to a drive axle connected to a crank arm by a drive linkage; a roller rotatably attached to the crank arm; a pedal pivotally attached to the frame having a cavity for receiving the roller; a contoured wear bar carried by the cavity for contacting the perimeter of the roller; a major arch included in the contoured wear bar contacting the roller when the pedal is on a down stroke; a minor arch included in the contoured wear bar for providing additional power when the pedal is near the end of its down stroke; and, a major front slope included in the wear bar for contacting the roller when the pedal is in its upstroke to place the pedal at its highest most position.
Abstract:
In one embodiment, a reciprocating tool includes a reciprocating plunger, the plunger including an inner wall defining a chamber portion within the plunger, a motor operably connected to the plunger, and a bushing located at least partially within the chamber and contacting the inner wall.
Abstract:
A power tool comprises a crank pin that is eccentrically rotatable by a motor about a rotational axis. A non-rotatable first slider is linearly reciprocated by the crank pin so as to linearly reciprocate a tool. An eccentric pin is disposed substantially diametrically opposite of the crank pin relative to the rotational axis and is eccentrically rotatable by the motor about the rotational axis. A non-rotatable second slider is linearly reciprocated by the eccentric pin in a substantially opposite phase from the first slider so that the second slider acts as a counterweight to the first slider in order to reduce vibrations at least in the direction of linear reciprocation. A rotatable component is rotatably driven by the motor about the rotational axis and has a center of gravity displaced from its rotational axis towards the eccentric pin so as to supplement the vibration reducing function of the counterweight.
Abstract:
A reciprocating power tool that includes a drive system having a first driven gear that includes a spindle counterbalance weight and a second driven gear that includes a spindle counterbalance weight. The first driven gear and the second driven gear rotate in opposite directions about an axis of rotation in response to rotation of a driving gear by a motor. The power tool further includes a spindle having a longitudinal axis and a first end that is configured to support a tool element. The spindle is coupled to one of the first driven gear and the second driven gear by a scotch yoke mechanism to reciprocate the spindle with respect to a housing of the power tool along the longitudinal axis of the spindle in response to operation of the motor.
Abstract:
A reciprocating drive assembly is disclosed for use in a fluid mixer to impart reciprocating movement along a longitudinal axis to a shaft carrying a mixing head. The drive assembly includes a housing, a flywheel mounted for rotation about a rotational axis, a crank member projecting from the flywheel, and a yoke supported by the housing for movement along a yoke axis parallel to the longitudinal axis. The yoke is releasably connected to the shaft and has a linear race formed therein for receiving the crank member. Guide assemblies are connected to the housing and to the yoke for sliding engagement therewith along guide axes parallel to the yoke axis. The yoke is between the guide assemblies. The crank member is caused to translate linearly within the race, thereby urging the yoke to move along the yoke axis to effect longitudinal reciprocating movement of the mixing head.
Abstract:
A Scotch yoke actuator is disclosed with a dual yoke and a diagonally symmetric design. A pair of shafts and pushing devices apply equal, opposing forces to the yoke, causing end loading forces applied to a rotatable shaft attached to the center of the yoke to be cancelled. In embodiments, the weight of the pushing devices is balanced about the yoke, each shaft extends in only one direction from the yoke, and/or the shafts are supported only by the yoke and the pushing devices. In embodiments that use yoke pins, the yoke pins include rollers or bearings to reduce friction, and/or two pair of yoke pin slots support protruding ends of the yoke pins. The yoke pin slots can extend to edges of a yoke housing face, allowing easy shaft removal and reinstallation, and each shaft can include a split end with extensions on opposing sides of the yoke.
Abstract:
An actuator system for use with a sheet transport system having a first roller and a second roller. The actuator system includes an idler assembly and a drive assembly. The idler assembly is coupled to the first roller and is biased to hold the first roller in a closed position engaging the second roller for transporting a sheet. The drive assembly is configured to engage the idler assembly to move the first roller between an open position spaced from the second roller and the closed position and to disengage the idler assembly when the first roller is in the closed position so that the first roller is held in the closed position solely by the idler assembly.
Abstract:
There is provided a mechanism for effectively converting rotary motion to a wide range of swing motion. A mechanism 1 for converting rotary to swing motion includes a rotary shaft 2, a pivot shaft 3 and a swing element 4. The rotary shaft 2 has an upright section 2A connected to a motor and a slant section 2C extending at an angle to the upright section 2A. The swing element is mounted to the pivot shaft 3. The slant section 2C is positioned between a pair of confronting surfaces 4D, 4E of the swing element 4. The slant section 2C is moved on and along the confronting surfaces during rotation of the rotary shaft 2 to cause the swing element 4 to be pivoted from side to side. This movement of the swing element 4 results in pivotal movement of the pivot shaft.
Abstract:
There is disclosed a high-pressure compressor comprising a compression mechanism for reciprocating/driving a piston with respect to a conventional cylinder by rotation of a motor and compressing an operating fluid sucked by this driving to generate the high-pressure operating fluid according to improvements in a piston shape, positions of a cylinder operation surface and the piston, specifics shapes of the cylinder and piston, and connecting constitution of the piston to a connecting rod, which solves problems such as occurrence of wear on a cylinder inner surface by displacement of the piston, size enlargement by an increase of a removal capacity, difficulty in processing the piston and connecting rod, and a large top clearance.
Abstract:
A rotary engine, pump or compressor with a framework is provided with intake/exhaust ports in end plates and a rotatably mounted block mounted there-between. In the four cylinder embodiment of this invention, first and second opposing cylinder sets are mounted in the block and each cylinder set includes first and second opposing cylinders with proximal ends and terminal ends with transfer ports disposed to alternately form passageways with the intake and exhaust ports as the cylinders rotate with the block. Each crankset includes a crankpin eccentrically mounted to the piston set to rotate about a crankpin axis, a crankpin gear fixed to the crankpin, an internal gear fixed relative to the first cylinder set, the internal gear having an internal gear configured to mate with the crankpin gear as the crankpin gear rotates within the internal gear, wherein the eccentric rotation of the crankpin offsets the rotation of the crankpin gear within the internal gear to provide approximately linear movement of the piston heads within the first and second cylinders and such that the crankpin also rotates about a crankset axis; and an inward side of the crankpin being eccentrically mounted to an inner crank gear, such that the rotation of the crankpin also rotates the inner crank gear about the crankset axis; wherein the generally linear movement of the circular base aperture of the piston set drives the crankpin gear to rotate around within the internal gear, thereby driving the crankpin to rotate about the crankpin axis; the inner crank gear mating with a driveshaft gear such that the rotation of the inner crank gear rotates the driveshaft. The rotation of the block is provided by any one of a number of different mechanisms.