Abstract:
An absorption chiller may include an absorbent circuit in which a liquid absorbent circulates and a working medium circuit in which a liquid working medium circulates. The absorbent circuit may include an absorber and a desorber. The working medium circuit may include an evaporator and a condenser. The absorption chiller may also include a low pressure membrane arrangement and a high pressure membrane arrangement each being permeable to a working medium vapour, impermeable to the liquid working medium and the liquid absorbent, and arranged between the evaporator and the absorber such that it is in contact with the working medium and the absorbent. At least one of the low pressure membrane arrangement and the high pressure membrane arrangement may include a working medium membrane and an absorbent membrane.
Abstract:
The present invention provides a distributed combined cooling, heating and power generating apparatus with an internal combustion engine by combining solar energy and alternative fuel and a method thereof, the apparatus comprising: an energy storage system for combined reaction between solar energy and alternative fuel, a solar fuel internal combustion engine generating system, a lithium bromide refrigeration system for absorbing exhaust heat of flue gas of solar fuel, a reaction device for recovering exhaust heat of flue gas, a heat exchanger for recovering exhaust heat of exhaust gas and a cylinder jacket and water plate heat exchanger. According to the present invention, solar energy is combined with alternative fuel to achieve conversion of solar energy to fuel chemical energy, such that solar energy is stored in form of synthesis gas fuel and combined with the combined cooling, heating and power generating system, which possesses high energy storing intensity, includes small volume of storing device, and achieve the objects of cooling, heating and power combination in low cost and high efficiency, thereby effectively solving the problem of difficulty in storage, and high cost and low efficiency in usage.
Abstract:
One exemplary embodiment of this invention provides a single-effect absorption chiller including an absorber operatively connected to a solution heat exchanger and a generator, and a condenser in fluid communication with the absorber, wherein the absorber is sized and configured to receive a feed of water from a source of water and to transfer heat to the feed of water and then to convey the feed of water to the condenser without further heat conditioning of the feed of water prior to its entry into the condenser, and wherein the condenser is sized and configured to receive the feed of water from the absorber and to transfer heat to the feed of water, thereby cooling the condenser without resorting to an external heat exchanger such as a conventional cooling tower.
Abstract:
An improvement to the air compressor of a combustion turbine system is disclosed, which makes the air compression more energy efficient plus have higher capacity on warm days. The same equipment with minimal modification is used to prevent inlet air icing conditions on cold days. Referring to FIG. 1, inlet air conditioner 3 supplies conditioned (chilled or heated) air to the combustion turbine, and heat recovery unit 1 supplies turbine exhaust heat to ammonia absorption refrigeration unit 2. Control valves 5, 6, 7, and 8 selectively supply either chilling refrigerant liquid or heating vapor to conditioning coil 3.
Abstract:
To provide a highly efficient and compact absorption refrigerating machine with water heated from 60 to 70 degrees Celsius as the heat source. In an absorption refrigerating machine including a regenerator G, condenser C, an absorber A, an evaporator E, an auxiliary regenerator GX and an auxiliary absorber AX, the concentrated solution from G is heated and further concentrated in GX, while the diluted solution from A is cooled in AX, the refrigerant vapor from GX is absorbed. A low temperature heat exchanger XL is provided for heat exchange between the concentrated solution supplied from GX to A, and the diluted solution sent from AX to G, and a high temperature heat exchanger XH is provided for heating the diluted solution leaving from XL and sent to G with the concentrated solution supplied from G to GX.
Abstract:
There is provided an absorption chiller-heater comprising an exhaust gas flow path in which an exhaust gas flows; an exhaust gas fired regenerator provided on the exhaust gas flow path so as to be heated by the exhaust gas; a cooling medium solution passage supplying a first solution of a cooling medium which is collected by an absorber to the exhaust gas fired regenerator; and an exhaust gas heat collector provided on the cooling medium solution passage for carrying out heat exchange between the first solution and the exhaust gas.
Abstract:
The object of the invention is to improve heat efficiency of an absorption refrigerator driven by exhaust heat supplied from the other apparatus as a part of heat sources. A diluted absorption liquid that absorbs a refrigerant in an absorber to decrease in concentration of the absorption liquid is discharged to the absorption liquid pipe and then branched to be supplied to first and second spaces of an exhaust heat regenerator. The diluted absorption liquid is heated by exhaust gas supplied through the exhaust heat supply pipe in each space and concentrated and regenerated for the first time. The absorption liquid concentrated and regenerated in the first space is supplied to a high-temperature regenerator and further heated by a gas burner. The heated absorption liquid is flown into a vapor-liquid separator in a mixed state of vapor and liquid, and then separated into refrigerant vapor and further concentrated absorption liquid.
Abstract:
The present invention provides an adsorption-type cooling apparatus comprising first, second, third, and fourth adsorption devices filled with a coolant and contain adsorbents which adsorb evaporated coolant and desorb the adsorbed coolant during heating. Adsorption cores provide heat exchange between the adsorbents and a heat medium, and evaporation and condensation cores provide heat exchange between heating medium and the coolant. A cooling device in which heating medium cooled in the evaporation and condensation cores circulates and cools the object of cooling. A heating means supplies a high-temperature heat medium to the first-fourth adsorption devices. A cooling means supplies a low-temperature heat medium which has a temperature lower than that of the high-temperature heat medium to the first-fourth adsorption devices. Also, a switching control means is provided which switches between multiple states.
Abstract:
The present invention provides an adsorption-type cooling apparatus comprising first, second, third, and fourth adsorption devices filled with a coolant and contain adsorbents which adsorb evaporated coolant and desorb the adsorbed coolant during heating. Adsorption cores provide heat exchange between the adsorbents and a heat medium, and evaporation and condensation cores provide heat exchange between heating medium and the coolant. A cooling device in which heating medium cooled in the evaporation and condensation cores circulates and cools the object of cooling. A heating means supplies a high-temperature heat medium to the first-fourth adsorption devices. A cooling means supplies a low-temperature heat medium which has a temperature lower than that of the high-temperature heat medium to the first-fourth adsorption devices. Also, a switching control means is provided which switches between multiple states.
Abstract:
LPG and gasoline are recovered from catalytic reformer plant treat gas and net gas by refrigeration-induced condensation and separation, using reformer plant waste heat to produce the refrigeration in an ammonia absorption refrigeration unit. Referring to FIG. 2, reformer waste heat from exchanger 21 powers absorption refrigeration unit 22, which supplies refrigeration to chiller 25. Net gas and treat gas is recuperatively cooled in recuperator 24, chilled in chiller 25, and separated in separator 26. Absorption refrigeration may also be supplied to cool FCC compressor inlet vapor to below ambient, either in conjunction with treat gas chilling or independently. Other waste heat streams may also be used.