Abstract:
An enclosed switchboard includes: a device containing board which contains main circuit devices such as circuit breakers; and a cable connection board which is arranged side by side adjacently to the device containing board, and contains cables that input and output electric power to/from the main circuit devices. In the enclosed switchboard, the cable connection board is configured by one housing; and the inside of the housing is divided into two by a partition plate to be comparted to a cable lead-in compartment which contains lead-in side cables and a cable lead-out compartment which contains lead-out side cables.
Abstract:
A material-saving, cost-efficient and simultaneously safe high-voltage system for energy transfer includes a busbar and at least one high-voltage device connected to the busbar by an electrically conductive connecting device or connector. The connecting device or connector has a predetermined breaking point which is constructed in such a manner that the predetermined breaking point will break if a predetermined force is exerted between the busbar and the high-voltage device.
Abstract:
An earthquake resistant equipment rack that includes multiple methods for reinforcing the equipment rack to resist seismic forces. The side rails can include two inwardly projecting V portions extending the length of the rails to diffuse seismic forces by deflecting seismic forces vertically. The base and top are preferably formed from multiple components formed from sheet metal and having both over-lapping multiple thickness of sheet metal and multiple box structures. A cover is non-removably attached to the base. In one embodiment, the cover has a dog house shape with inclined roof like surfaces.
Abstract:
An equipment mounting rack is composed of a seismically sound skeleton structure having spaced vertical uprights supplemented by distinct spaced equipment mounting structures attached to that skeleton structure and extending along these vertical uprights and constituting side wall structures of a mounting rack interior space. The distinct spaced equipment mounting structures may have elongate first sections extending along the spaced vertical uprights, and elongate second sections extending along these first sections and constituting side wall structures of a mounting rack interior space. Cabinet walls may be attached to the skeleton structure, and the equipment mounting structures may constitute inside such cabinet walls side wall structures of a mounting rack interior space. The vertical uprights advantageously are reinforced by elongate partial enclosures that may avoid the need for a large number of weakening mounting holes in these uprights.
Abstract:
A cabinet for mounting electronic equipment having power input port mounted external to the frame of the cabinet in order to make installation of a power input unit more convenient. The power input port may be mounted on the bottom of the cabinet whereby the power input unit, for example, a power distribution unit, may be installed prior to, during, or after installation of the cabinet. In addition, among other things, the mounting of a power input unit outside the frame of the cabinet provides for improved accessability and servicing of the power input unit and provides for more usable space inside the cabinet frame.
Abstract:
A rack assembly for mounting telecommunications equipment and adapted for withstanding seismic forces includes a main frame subassembly including an upper horizontal support member, a lower horizontal support member, a first vertical support member, and a second vertical support member spaced in parallel relation to the first vertical support member. The first and second vertical support members each have a double-bend profile, defined by an inside base portion, a first medial leg and a second medial leg each extending substantially orthogonally from the inside base portion, a first distal leg extending substantially orthogonally from the first medial leg in a direction towards the second medial leg, and a second distal leg extending substantially orthogonally from the second medial leg in a direction towards the first medial leg. An extension frame subassembly is securely attached to the upper horizontal support member of the main frame subassembly. The extension frame subassembly includes vertical frame members having the same double-bend profile as the first and second vertical support members of the main frame subassembly.
Abstract:
An electrical enclosure includes a frame and a seismic subframe. The seismic subframe includes vertical frame members interconnecting with braces at the top and bottom and opening at the front and rear of the enclosure. The assembly mounts to the rectangular frame of the enclosure. Grid straps extend from front to rear to connect the assemblies and provide additional bracing. Front and rear panels include gusset type braces at the corners mounted to the panels that engage inner edges of the framework to provide positioning as well as support.
Abstract:
The earthquake resistant equipment rack of the present invention includes a base having integrally formed upstanding walls on each end to provide structural rigidity to the connection of the base and a plurality of vertical upright members. The upstanding walls increase the rigidity of the base in conjunction with the vertical members, and also work in conjunction with gussets to further increase the rigidity and stiffness at the base. The gussets are comprised of a vertical wall which is notched on one end to be coupled to a front wall or channel in the base. The gussets also include a top wall and back wall which are directly coupled to the vertical upright members positioned in association with the base. A channel top is coupled between the uppermost portions of the vertical upright members providing the rack with a rectangular frame structure. Channel stiffeners, which consist of relatively short metal members, are coupled to the upper and lower ends of the vertical upright members at the points at which the vertical upright members are coupled to the top and the base. The channel stiffeners transfer lateral stress from the vertical upright members to the base and top of the rack, making the rack's frame stronger and increasing the stiffness in the lateral direction throughout and along the vertical upright members. The base, vertical upright members, top, gussets and stiffening members are all coupled to one another by means of seam welds.
Abstract:
An unitized monocoque enclosure for housing electronic equipment, as in a communications system central office, has side, top and bottom panels of corrugated metal. The panels comprise a continuous envelope for the structure and themselves constitute the structural support for electronic equipment shelves and the electronic equipment mounted thereby, which shelves are supported by screw members directly into a corrugation of the side panels. No additional, uprights, frame supports or braces are utilized. The resultant structure is both simple to fabricate and achieves improved earthquake resistance.
Abstract:
The support frame according to the preferred embodiments of the invention reduces the abrupt strains acting upon a foundation to such an extent that light and hence more economical foundations for the device secured to the support frame can be used. A preferred embodiment of the support frame includes at least two resiliently embodied girders and at least one crossbar connecting said girders. At least one securing point is provided on the girders or the crossbar for receiving a structural component to be supported. At least one connecting point is provided on each of the girders, for connecting the girder to a foundation. An interstice is provided between the respective girders and the foundation, wherein the interstice is bridged only at the at least one connecting point. The resilient girders and the interstice allow the impact upon the foundation to be dampened.