Abstract:
A transmission and emission assembly for a multibeam antenna and a multibeam antenna are disclosed. In one aspect, the assembly includes a plurality of radiating elements forming a radiating surface, an emission distribution network arranged upstream from the radiating surface and including a plurality of emission ports, a receiving distribution network arranged upstream from the radiating surface and including a plurality of receiving ports, a plurality of low-noise amplifiers and a capability for interconnecting each receiving port to at least one low-noise amplifier. The emission distribution network and the receiving distribution network are separate from one another and are arranged in a same unit separate from the communication module. The receiving distribution network and the radiating elements are thermally separated.
Abstract:
An arrangement is disclosed for providing the functionality of a four port, four channel rotary switch. The arrangement includes a first four port rotary microwave switch, the first switch including a first rotor and a first set of four waveguide ports, and a second four port rotary microwave switch, communicatively coupled to the first switch, the second switch including a second rotor and a second set of four waveguide ports. Each of the first switch and the second switch has at most three channels.
Abstract:
A waveguide switch based on alternating short and open loads in a waveguide path. In one embodiment, the switch being made up of four waveguides connected by sections of ridge waveguides where simple short-circuit loads can be activated to control the signal paths. The switch being adapted for the C-, R- and T-type switches. Another embodiment of the same device being adapted for SPT type switched.
Abstract:
An automatic protection system for receiver circuitry includes a waveguide switch having a permanent magnet attached to a rotatable manifold and at least one electromagnet axially surrounding the rotatable manifold. An automatic actuation circuit is coupled to the waveguide switch. The automatic actuation circuit includes an RF power detector for detecting incident RF power around the rotatable manifold and generating a detection signal therefrom, a controller coupled to receive the detection signal and for generating at least a first control signal based on the detection signal, and a magnet current driver coupled to receive the first control signal and coupled to the electromagnet. The magnet current driver provides a first drive signal responsive to the first control signal that automatically rotates the rotatable manifold into a protected position that implements a protected path, such as when the incident RF power exceeds a predetermined RF power level.
Abstract:
A three dimensional waveguide is integrated with a MEMS structure to control a signal in various RF components. The components include switches, variable capacitors, filters and phase shifters. A controller controls movement of the MEMS structure to control a signal within the component. A method of construction and a method of operation of the component are described. The switches have high power handling capability and can be operated at high frequencies. By integrating a three dimensional waveguide with a MEMS structure, the components can be small in size with good operating characteristics.
Abstract:
A three dimensional waveguide is integrated with a MEMS structure to control a signal in various RF components. The components include switches, variable capacitors, filters and phase shifters. A controller controls movement of the MEMS structure to control a signal within the component. A method of construction and a method of operation of the component are described. The switches have high power handling capability and can be operated at high frequencies. By integrating a three dimensional waveguide with a MEMS structure, the components can be small in size with good operating characteristics.
Abstract:
An apparatus directs two high-power UHF transmitter signals to one or the other or a combination of output destinations as determined by the setting of control components. Redirection between outputs can be performed continuously under full power. Using the apparatus, synchronous amplifiers directed to the same output produce a signal with all of the power of both amplifiers. The signals can be shifted to the station load without shutting down the amplifiers. After a failure, the remaining amplifier can be redirected to provide a clean signal.
Abstract:
An apparatus and method for switching waveguides between a junction waveguide and a bypass waveguide among a plurality of housing ports. The apparatus comprises a housing having a first, second and third housing port and a waveguide rotor, having a first and second rotary position. The waveguide rotor includes a junction waveguide, having a first, second and third junction port, for combining the first, second and third housing ports in the first rotary position and a bypass waveguide, having a first and second bypass port, for connecting the first and second housing ports in the second rotary position. The junction and bypass waveguides are alternately selectable by rotating the waveguide rotor to the first and second rotary positions. The method comprises rotating a waveguide rotor including a junction waveguide having a first, second and third junction port and a bypass waveguide having a first and second bypass port, to a first rotary position in a housing including a first, second and third housing port, whereby the first, second and third junction ports connect the first, second and third housing ports and rotating the waveguide rotor to a second position a bypass waveguide, whereby the first and second bypass ports connect the first and second housing ports.
Abstract:
These and other objects of the present invention are provided by an ambient load waveguide switch mounted between a feed horn and a low noise amplifier in a ground based antenna. The ambient load waveguide switch includes a housing assembly having a through path. A shuttle assembly is positioned within the housing assembly and moves linearly within the housing assembly on a guide assembly between a first position and a second position. In the first position, the shuttle assembly has a waveguide alignable with the through path of the housing assembly. In a second position, the shuttle assembly has an ambient load element alignable with the through path of the housing assembly. A motor assembly moves the shuttle assembly in a first direction and compresses a first spring to bias the shuttle assembly into the first position. The motor assembly moves the shuttle assembly in a second direction and compresses a second spring to bias the shuttle assembly into the second position. There are horizontal and vertical alignment mechanisms for accurately and repeatedly positioning the waveguide and the ambient load cell in the first and second position, respectively. Advantageously, the guide assembly is relatively flexible resulting in long life and infrequent calibration. The waveguide provides a straight line path and is under two inches in length.
Abstract:
Microwave switches are shown which can route signals in an operating frequency band along selectable signal paths between a plurality of microwave ports. The switches are especially suited for forming switching systems that can substitute redundant components for failed components. In one embodiment, waveguide transmission lines and microwave ports are serially coupled in a closed loop with other waveguide transmission lines arranged transversely across the loop. In another embodiment, waveguide modules are formed of three waveguides coupled to a microwave port and the waveguide modules are serially arranged. In each waveguide of these embodiments, conductive reeds are movable between a signal-attenuating position abutting the interior surface of the waveguide and a signal-conducting position substantially coaxial with the waveguide and coupled to the microwave ports at each waveguide end.