Abstract:
An x-ray tube has a vacuum housing containing an electron-emitting cathode and an anode on which the electron beam, accelerated with an electrical field, is incident. The x-ray tube contains a magnet system which generates a main magnetic field with spring focus for deflecting and focusing the electron beam such that the focal spot on the incident surface of the anode can be azimuthally varied. A coil is located spatially separate from the main magnetic field and the alignment of the focal spot relative to the incident surface can be influenced therewith. The coil is fashioned and arranged such that a non-uniform magnetic field that effects a parallel alignment of the focal spot in the spring function is generated therewith.
Abstract:
An anode (A) closes one end of an evacuated envelope (C) and a cathode end plate (22) closes the other. A cathode assembly (B) is mounted on a bearing (40) in the evacuated envelope such that the envelope and cathode can undergo relative rotation. A motor (38) rotates the anode and envelope while a pair of magnets (44, 46) hold the cathode assembly stationary. Bearing (40) functions as a current path from a current source (72) to the primary windings of a transformer (58). Another bearing (94) provides a return current path from the transformer to the current source. The secondary windings of the transformer are connected with a cathode filament (52). The transformer enables a relatively low ampere current to pass through the bearings to limit cathodic damage to the bearings, yet provides sufficient amperage to the filament to cause thermionic emission. The bearings provide a direct transfer of current which does not degrade the vacuum in the envelope in such a manner that the current through the cathode filament can be measured directly from outside the envelope.
Abstract:
An X-ray tube comprises a vacuum vessel; a cathode and an anode fixedly disposed inside the vacuum vessel; and a rotary mechanism that rotates the vacuum vessel. The cathode is disposed on the circumference with the rotary shaft of the rotary mechanism as its center and includes a plurality of cathode parts that can individually be turned ON/OFF. The anode includes parts opposite to the plurality of cathode parts, respectively.
Abstract:
An X-ray diagnostic apparatus according to an embodiment includes an X-ray tube holding device, an X-ray detector, a rotator, an arm, and a tubular body. The X-ray tube holding device generates X-rays. The X-ray detector detects the X-rays. The rotator holds the X-ray tube holding device so as to be rotatable about a first rotation axis obtained by setting an irradiation direction of the X-rays as an axis. The arm holds the rotator and the X-ray detector and is rotatable about a second rotation axis different from the first rotation axis. The tubular body connects the X-ray tube holding device and a device away from the arm. The arm holds the rotator so as to be rotatable about the first rotation axis in a direction in which torsion of the tubular body is reduced.
Abstract:
An x-ray tube includes an anode (A) and an envelope (C). A cathode assembly (B) which is supported in the envelope on a bearing (32) emits a beam of electrons which strike the anode forming a focal spot. The anode rotates (D) relative to the cathode such that focal spot follows a generally annular path along a beveled track (14). If the axis of the anode and the cathode assembly are screwed or offset, the focal spot path is not circular and wobbles. An adjustment assembly (60) adjusts the relative positions of the anode, the cathode and the envelope to adjust the anode and cathode assembly axes. The adjustment assembly also includes one or more electrodes (102, 108) which adjust the position of the focal spot. An angular position encoder (106) identifies an angular orientation of the anode. A control circuit (110) applies an electrostatic potential to the electrodes to move the focal spot such that it stays on a constant plane of the leveled anode surface.
Abstract:
A housing (A) which has a radiation transmissive window (52) defines a coolant oil reservoir (50). An x-ray tube (B) is mounted within the cooling oil reservoir. The x-ray tube includes a vacuum envelope having a cylindrical wall portion (10). A cylindrical sleeve (70) is mounted around the cylindrical wall (10) defining a narrow coolant oil gap (100). In one embodiment, a motor (16) rotates the vacuum envelope and an anode (14). The cylindrical sleeve (70) and the cylindrical rotating vacuum envelope wall portion (10) with the cooling oil film in the gap define a journal bearing which minimizes the horsepower requirements of the motor (16). A diaphragm (102) is expanded to reduce the thickness of the coolant oil film in the journal bearing gap. The cylindrical sleeve (70) is preferably constructed of a radiation blocking material such that the body of coolant oil (50) is shielded from x-rays (42). A window (76) is defined in alignment with the housing window (52) such that a beam of x-rays is permitted to leave the assembly. A radiation blocking disk (84) is mounted between the cathode and one end of the tube to block radiation exiting in that direction. The anode blocks radiation from exiting in the other direction. Optionally, an additional cylinder of radiation blocking material (86) may be mounted between the cathode and the cylindrical sleeve (70).
Abstract:
Several different embodiments of high-intensity rotating-anode X-ray are shown which use a liquid or fluid-cooled rotating-anode. No ferrofluid-type rotating joints or O-ring gasket-type seals are required so that the interior of the tube maintains a high vacuum without pumping. A bellows permits mechanical coupling to interior structures of the tube while providing a completely vacuum tight enclosure. All joints may be hard soldered or brazed together so the entire system can be baked at a high temperature during pumpdown.
Abstract:
Conventionally, the magnetic field generator was arranged perpendicularly to the axis of the electron beam. The magnetic field generator of this invention is arranged so as to be inclined relative to the plane perpendicular to the axis of the electron beam. Specifically, the magnetic field generator is arranged so as to be inclined relative to the plane perpendicular to the axis of the electron beam within the range in the cathode side from the focused and deflected electron beam. Inclination up to the anode side opposite to the cathode side will lead to a possibility of increasing the reduced X-ray source diameter. Thus, arranging the magnetic field generator so as to be inclined within the range in the cathode side from the electron beam may reduce the X-ray source diameter.
Abstract:
An x-ray unit has an x-ray radiator having an anode that emits x-rays upon being struck by electrons, a cathode that thermionically emits electrons upon irradiation thereof by a laser beam, electrical connections for application of a high voltage between the anode and the cathode to accelerate the emitted electrons toward the anode as an electron beam, a vacuum housing that can be rotated around an axis, an insulator that is part of the vacuum housing and that separates the cathode from the anode, a drive that rotates the vacuum housing around its axis, an arrangement for cooling components of the x-ray radiator, and an arrangement that directs the laser beam from a stationary source, arranged outside of the vacuum housing, onto a spatially stationary laser focal spot on the cathode and that focuses the laser beam. The x-ray unit furthermore has a control circuit with which an operating property of the x-ray unit is adjusted and at least one measurement element for measurement of a measurement quantity is effectively correlated with the temperature of the cathode. The control circuit adjusts the operating property dependent on the measurement of the measurement quantity.
Abstract:
An x-ray radiator has a rotating bulb tube whose vacuum housing rotates within the radiator housing filled with a fluid coolant, as well as with an external heat exchanger for the cooling of the coolant, with the coolant admission connector and the coolant discharge connector for the coolant conducted through the external heat exchanger without a circulating pump arranged at respective positions of the radiator housing at which a lower pressure and a higher pressure are generated by the rotation of the rotating bulb.