Abstract:
Embodiments herein provide haptic button assemblies with a shape memory alloy actuator (SMA) in which the haptic button has a low profile while still providing a satisfying tactile response or sensation to a user. Advantageously, the haptic button assemblies may have a profile that, for example, enables the assembly to be incorporated into the free space along an edge of a portable computing device. The haptic assemblies may for example, be arranged to move the button perpendicularly with respect to the edge of the device.
Abstract:
A haptic peripheral includes a housing and a haptically-enhanced user input element. The haptically-enhanced user input element is configured to receive an input from a user, and includes a mechanical key having a keycap with a user contact surface configured to contact the user and a smart material actuator integrated onto the user contact surface of the keycap. The smart material actuator is configured to receive a control signal from a processor and is configured to deform at least a portion of the user contact surface relative to the keycap of the mechanical key in response to the control signal from the processor to thereby provide a haptic effect to a user of the haptic peripheral. The haptic peripheral may also include a braking actuator coupled to the mechanical key to hold the mechanical key in a depressed position to indicate an inactive status to a user. In addition, the haptic peripheral and the haptically-enhanced user input element may be modular.
Abstract:
Systems and methods for forming button assemblies for electronic devices are disclosed. According to some embodiments, the button assemblies include one or more sound improvement features to improve the sound that the button assemblies make when pressed by users of the electronic devices. According to some embodiments, the button assemblies include shims that provide proper alignment of the various components of the button assemblies and to accommodate any tolerance stack up of the various components of the button assemblies. The shims can include alignment features to prevent the shims from shifting within the button assemblies. According to some embodiments, thicknesses of the shims are customized to accommodate varying tolerance stack ups of the components of the button assemblies. In some embodiments, the button assemblies include a combination of sound improvement features and shims.
Abstract:
Examples provide a piezoelectric energy harvester and a wireless switch including the same. The piezoelectric energy harvester includes a pressure transmission part situated between a pressing plate and a piezoelectric body, so as to transmit a uniform amount of pressure to the piezoelectric body, thereby generating a constant level of energy. In addition, a wireless switch uses energy generated in the piezoelectric energy harvester as its driving power, thereby transmitting radio frequency (RF) communications signals to an external electronic device to control the operation of the electronic device.
Abstract:
The instant disclosure is a resilient pressing member structure having a pressing unit disposed on top of a translucent insulated layer, an upper cover, a light-emitting unit, two conductive layers and a spacer. The pressing unit includes a plurality of pressing members while the cover is formed with a cavity filled with a fluid to achieve the effect of pressure dispersion. A light guiding structure and a light reflecting structure are disposed on the topside and the backside of the insulated layer, respectively. The insulated layer is formed by at least one light unit opening which extends through the insulated layer. The light-emitting unit is hosted inside the light unit opening. Light from the light-emitting unit penetrates the insulated layer and reaches the pressing member. Then the guiding structure directs light while the reflecting structure reflects light towards the pressing member, thus illuminates the pressing member.
Abstract:
The instant disclosure is a resilient pressing member structure having a pressing unit disposed on top of a translucent insulated layer, an upper cover, a light-emitting unit, two conductive layers and a spacer. The pressing unit includes a plurality of pressing members while the cover is formed with a cavity filled with a fluid to achieve the effect of pressure dispersion. A light guiding structure and a light reflecting structure are disposed on the topside and the backside of the insulated layer, respectively. The insulated layer is formed by at least one light unit opening which extends through the insulated layer. The light-emitting unit is hosted inside the light unit opening. Light from the light-emitting unit penetrates the insulated layer and reaches the pressing member. Then the guiding structure directs light while the reflecting structure reflects light towards the pressing member, thus illuminates the pressing member.
Abstract:
A two-level pressure sensitive keyboard includes at least one key and a membrane switch circuit module. The membrane switch circuit module includes a first contact, a second contact, a first spacing layer for separating the first contact from the second contact, a third contact, a fourth contact, and a second spacing layer for separating the third contact from the fourth contact. The thickness of the second spacing layer is greater than that of the first spacing layer. When the key is depressed in response to the first pressure, the first contact and the second contact are electrically connected with each other to generate a first sensing signal. When the key is depressed in response to the second pressure, the first contact and the second contact are electrically connected with each other and the third contact and fourth contact are electrically connected with each other to generate a second sensing signal.
Abstract:
A switch assembly operating an electrical circuit using an elastomeric pad is provided. The elastomeric pad comprises one or more collapsible domes that are positioned such that a plunger element supported by the switch assembly collapses the domes when an actuation button is tilted. The plunger element may have a limiting mechanism to limit downward movement of the plunger element such that the collapsible domes are not overloaded. The body and plunger may also be formed with complementary profiled portions that restrict any one or more of fore/aft, side-to-side and up/down movements of the plunger with respect to the body to prevent abnormal loading on the collapsible domes to increase the lifecycle of the elastomeric portion. The elastomeric portion may also be adapted to provide both single and dual double detent feedback by using passive collapsible domes that provide tactile feedback without operating on the electrical circuit.
Abstract:
A device with a button guiding element comprises a device substance, a button, a button guiding element, and a circuit board. The device substance has a button opening. The button comprises a button substance, a first fixing element, a second fixing element, and a driving element. The button substance is located in the button opening. The first fixing element is fixed to the first side of the button substance and engages with the device substance. The second fixing element is fixed to the second side of the button substance. The driving element is located on the button substance. The circuit board has a driving point, which is spaced apart from and in alignment with the driving element. The button guiding element disposed in the device substance is used to restrict the motion of the second fixing element to reduce the occurrence of a situation in which the button is obliquely positioned.
Abstract:
A side wall and a top wall are integrally formed at the interior of a tubular case, which houses a switch. A cap member is fitted on the top of this case, and a flexible seal member is mounted on the top wall by way of a seal cover having a corner portion which is formed as a curve.