摘要:
A supplemented nuclear fuel comprises a nuclear fuel of oxide type which generates fission products such as tellurium, cesium and iodine, which generate via chemical interaction species that are potentially corrosive, supplemented with at least one redox system comprising a first and second species comprising a common element having a different degree of oxidation in each of the two species, the system having an oxygen potential curve as a function of the temperature that is within an interval delimited by: an upper limit: the curve of coexistence of the chemical species I2Te (g) and CsI (g) at the same partial pressure imposed by the equilibrium between CsI (l) and CsI (g), approximated between 1000° C. and 2000° C. by a straight line segment whose ends PO2/11 and PO2/12 have the coordinates: PO2/11 (T=1000° C.)≈−370 kJ/molO2 and PO2/12 (T=2000° C.)≈−230 kJ/molO2; and a lower limit: the curve of oxygen potential of the system (Cs2MoO4/Cs+Mo) approximated between 1000° C. and 2000° C. by a straight line segment whose ends PO2/21 and PO2/22 have the coordinates: PO2/21 (T=1000° C.)≈−530 kJ/molO2 and PO2/22 (T=2000° C.)≈−390 kJ/molO2.
摘要:
A fuel element has a ratio of area of fissionable nuclear fuel in a cross-section of the tubular fuel element perpendicular to the longitudinal axis to total area of the interior volume in the cross-section of the tubular fuel element that varies with position along the longitudinal axis. The ratio can vary with position along the longitudinal axis between a minimum of 0.30 and a maximum of 1.0. Increasing the ratio above and below the peak burn-up location associated with conventional systems reduces the peak burn-up and flattens and shifts the burn-up distribution, which is preferably Gaussian. The longitudinal variation can be implemented in fuel assemblies using fuel bodies, such as pellets, rods or annuli, or fuel in the form of metal sponge and meaningfully increases efficiency of fuel utilization.
摘要:
Fuel elements for use in reactors include a cladding tube having a longitudinal axis and fuel disposed therein. At least one channel is formed in at least one of the fuel and the cladding tube and extends in a direction along the longitudinal axis of the cladding tube. The fuel element further includes a plenum having at least one getter material disposed therein. Methods of segregating gases in fuel elements may include forming a temperature differential in the fuel element, enabling at least one gas to travel into at least one channel formed in the fuel element, and retaining a portion of the at least one gas with at least one getter material. Methods of segregating gases in fuel elements also may include enabling at least one gas to travel through at least one channel of a plurality of channels formed in the fuel element.
摘要:
A fuel element has a ratio of area of fissionable nuclear fuel in a cross-section of the tubular fuel element perpendicular to the longitudinal axis to total area of the interior volume in the cross-section of the tubular fuel element that varies with position along the longitudinal axis. The ratio can vary with position along the longitudinal axis between a minimum of 0.30 and a maximum of 1.0. Increasing the ratio above and below the peak burn-up location associated with conventional systems reduces the peak burn-up and flattens and shifts the burn-up distribution, which is preferably Gaussian. The longitudinal variation can be implemented in fuel assemblies using fuel bodies, such as pellets, rods or annuli, or fuel in the form of metal sponge and meaningfully increases efficiency of fuel utilization.
摘要:
An alkali metal reactor power supply, including: a reactor vessel, the bottom part of which is provided with a liquid alkali metal; a reactor core, which is arranged in the reactor vessel and includes a plurality of fuel rods and a radial reflection layer arranged at the periphery of the plurality of fuel rods, wherein the surface of each fuel rod is provided with a first liquid absorption core, the bottom part of the reactor core is provided with second liquid absorption cores which are connected to the first liquid absorption cores, and the second liquid absorption cores can be in contact with the liquid alkali metal; and alkali metal thermoelectric converters, which are arranged along the circumferential direction of the radial reflection layer, and divide the inside of the reactor vessel into a high-pressure steam chamber located above the alkali metal thermoelectric converters and a low-pressure steam chamber located below the alkali metal thermoelectric converters. By using the phase-change heat transfer of alkali metal, the circulating power of the liquid alkali metal is provided by using the liquid absorption cores, the structure is simple, the arrangement is flexible, and the power generation efficiency is high.
摘要:
A method is described that includes the steps of making a thin walled Zr alloy tube, loading nuclear fuel pellets into the tube, compressing the tube onto the fuel pellets to substantially reduce free space around the fuel pellets, positioning end plugs at each of two ends of the tube, filling the tube with a heat transferring gas, and coating the compressed tube with a corrosion resistant material using a thermal deposition process, such as cold spray, before inserting the tube into a pre-formed SiC composite cover having at least one closed end.
摘要:
Provided are a nuclear fuel rod for fast reactors that includes a metallic fuel slug coated with a protective coating layer and a fabrication method thereof. The nuclear fuel rod for fast reactors that includes a surface treated metallic fuel slug and a cladding tube according to the present invention has an excellent effect of stabilizing components of the metallic fuel slug and fission products or impurities, because the interdiffusion between the metallic fuel slug and the cladding tube does not occur. Also, since the uniform coating on the surface of the metallic fuel slug may be facilitated and fabrication costs may be significantly reduced in comparison to a typical technique of using a functional material for preventing the interdiffusion at an inner surface of the cladding tube, it may be suitable for fabricating the nuclear fuel rod for fast reactors.
摘要:
A fuel element has a ratio of area of fissionable nuclear fuel in a cross-section of the tubular fuel element perpendicular to the longitudinal axis to total area of the interior volume in the cross-section of the tubular fuel element that varies with position along the longitudinal axis. The ratio can vary with position along the longitudinal axis between a minimum of 0.30 and a maximum of 1.0. Increasing the ratio above and below the peak burn-up location associated with conventional systems reduces the peak burn-up and flattens and shifts the burn-up distribution, which is preferably Gaussian. The longitudinal variation can be implemented in fuel assemblies using fuel bodies, such as pellets, rods or annuli, or fuel in the form of metal sponge and meaningfully increases efficiency of fuel utilization.
摘要:
A new interface between the cladding and the stack of pellets in a nuclear fuel rod. According to the invention, an interface joint made of a material transparent to neutrons, in the form of a structure with a high thermal conductivity and open pores, adapted to deform by compression across its thickness, is inserted between the cladding and the stack of fuel pellets over at least the height of the stack. The invention also relates to associated production methods.