Abstract:
A hydrogen storage heat pump, including: a hydrogen storage unit in which hydrogen gas is stored in a compressed state; a hydrogen flow tube through which the hydrogen gas, which is supplied from the hydrogen storage unit, flows; plural hydrogen absorbing materials that are provided at the hydrogen flow tube, that each have a different absorption pressure at which hydrogen is absorbed, and that are arranged in an order such that the absorption pressure decreases in a hydrogen gas flow direction from the hydrogen storage unit; and a switching valve that is disposed between the hydrogen absorbing materials in the hydrogen flow tube and that switches a flow rate of the hydrogen gas.
Abstract:
The air conditioning system including at least one sensor of the thermal comfort of the passenger compartment of a motor vehicle, and an apparatus having at least one pair of heat-exchanger units, each designed to increase and reduce said temperature at alternating intervals under the control of the sensor. Each heat-exchanger unit comprises a substrate having the property of absorbing and releasing heat according to the absorption of a gas. The two substrates are set in two hermetic casings in communication with one another through a compressor and a series of valves, which can be actuated so as to transfer the gas alternately from one to another of the two substrates. Each heat exchanger unit also includes an outlet conveyor with an outlet opening to the passenger compartment and another outlet opening towards the outside. The two outlets are controlled by hatches that can be actuated intermittently so as to send hot air or cold air continuously into the passenger compartment.
Abstract:
A system for flowing gaseous fluid comprising: a collection container; compression machinery disposed within the collection container, and including an inlet, a fluid compression space, and an outlet, wherein the inlet is fluidly coupled to the outlet through the fluid compression space, and wherein the inlet is fluidly coupled to an inlet fluid conduit and the outlet is fluidly coupled to an outlet fluid conduit and each of the inlet and outlet fluid conduits extends through and externally of the container; wherein the collection container is configured for receiving gaseous fluid leakage flow from the compression space, and is fluidly coupled to the inlet of the compression machinery to facilitate flow of the received leaked gaseous fluid to the inlet of the compression machinery.
Abstract:
A heat pump and hydrogen compression apparatus includes a heat exchange chamber through which a heating medium source circulates, a pair of hydrogen chambers formed on both sides of the heat exchange chamber, and hydrogen storage alloy pipe groups, one end portion of which imports into the pair of hydrogen chambers, and whose other end portion extends in a free state into the heat exchange chamber, and that form a pair whose one end portions that are on the side of the pair of hydrogen chambers are each fixed on that side, wherein the hydrogen storage alloy pipe groups have hydrogen storage alloy pipes provided a hydrogen storage alloy inside, the free end portion on the heat exchange chamber side of the hydrogen storage alloy pipe is closed off, and hydrogen circulation holes are opened in the end portions on the hydrogen chamber sides of the hydrogen storage alloy pipe.
Abstract:
The present invention relates to a miniature metal hydride thermal storage apparatus for the cooling of devices to subambient temperatures, the apparatus composed of at least two chambers containing distinct metal hydrides.
Abstract:
The apparatus is a hydride heat pump which uses double communicating section containers holding high and low temperature metal hydrides, with the containers moving back and forth within channels between three heat exchangers. The preferred device has a cylindrical body with the several cylindrical channels in a circular pattern around the axis of the cylindrical body. High, medium, and low temperature heat exchangers are located in the body in sequence along the channels. Transition regions formed by thermal bridges alternating with thermal insulation are located along the channel walls between the heat exchangers to transfer heat among all the hydride containers located in each transition region. The lengths of the heat exchangers and the transition regions, the geometry of the containers, the timing of the reciprocation, and the number of channels are selected so that at least two containers moving in opposite directions are in contact with the transition zones at any time.
Abstract:
A metal hydride reactor comprising a tubular pressure receptacle having an opening at its one end and a metal hydride filling the receptacle therein, at least a part of the outer wall surface of the tubular pressure receptacle forming a heat-exchanging surface; a heat-conducting fin of a heat-conducting material provided to transmit heat from the metal hydride in the pressure receptacle to the heat-exchanging surface and limit the location of the metal hydride in the pressure receptacle; and at least one porous member extending axially of the receptacle for forming within the receptacle a hydrogen gas flow passage leading to the opening of the receptacle, the porous member being permeable to hydrogen gas but impermeable to the metal hydride.
Abstract:
Improved power cycles for improving the production of power and refrigeration and for conserving thermal energy, utilizing as a common basic characteristic, a hydride-dehydride-hydrogen power cycle in which hydrogen is reversibly combied with a hydride-forming material at a relatively low temperature and pressure, the hydrided material is then heated at constant volume to chemically compress the hydrogen, and finally the material is dehydrided by further heating the material to release hydrogen gas at relatively high pressure and temperature. The pressurized high temperature hydrogen gas as thus developed is used in various ways for producing power and refrigeration, including functioning as a low temperature heat sink for certain auxiliary or ancillary power cycles, prior to recycling the hydrogen gas for reuse in the described hydride-dehydride-hydrogen cycle.
Abstract:
Improved power cycles for improving the production of power and refrigeration and for conserving thermal energy, utilizing as a common basic characteristic, a hydride-dehydride-hydrogen power cycle in which hydrogen is reversibly combined with a hydride-forming material at a relatively low temperature and pressure, the hydrided material is then heated at constant volume to chemically compress the hydrogen, and finally the material is dehydrided by further heating the material to release hydrogen gas at relatively high pressure and temperature. The pressurized high temperature hydrogen gas as thus developed is used in various ways for producing power and refrigeration, including functioning as a low temperature heat sink for certain auxiliary or ancillary power cycles, prior to recycling the hydrogen gas for reuse in the described hydride-dehydride-hydrogen cycle.
Abstract:
Improved hydrogen-hydride absorption systems for improving the energy utilization in refrigeration and heat pump cycles comprise reactor systems for chemically forming three or more hydride components, means for supplying heat to and removing heat from the hydride in the respective systems, and means for conveying hydrogen between the several reactor systems.A method for deriving improved heat pump effects from a narrowly temperature differential thermal source and sink by means of three or more hydride components is achieved by successive pressure staging between a series of hydride components over the narrow temperature range of the thermal source.A method for deriving improved energy utilization of a high temperature thermal source for refrigeration by means of three or more hydride components is effected by cascading pressure differences between hydride components.A method for the combined improvement of power production and thermal energy recovery at a higher intermediate temperature than the low temperature energy rejection of the power cycle by the heat pump effects, which method employs the cascading of pressure differences between hydride component systems.