Abstract:
Disclosed is a miniaturized plasma propulsion device with minimized surface area of the thruster walls exposed to the plasma and, as a result, reduced plasma-surface interactions including a set of segmented electrodes to facilitate the following improvements compared to relevant existing technologies: 1) control of the plasma flow including focusing of the plasma plume 2) increase of the thrust 2) reduction of inefficiencies associated with the electron cross field current, and 3) mitigation of low frequency oscillations. The electrodes affect all these actions when a DC or modulated voltage is applied to one or all of them with the same or different amplitudes, with the same or different frequencies or phases which are all optimized to realize the best performance through changes in the acceleration and/or ionization regions. In addition, the applied voltage to the main electrodes may also be modulated.
Abstract:
A magnetic pole structure for a Hall thruster is provided. The magnetic pole structure includes: multiple wide-envelope outer magnetic pole components, a magnetic bridge, a pagoda-shaped inner magnetic pole component, a top plate, and a bottom plate, where the multiple wide-envelope outer magnetic pole components are arranged on an outer edge of the Hall thruster, symmetrical about the pagoda-shaped inner magnetic pole component, and enclose a semi-open structure; the magnetic bridge is located between each of the wide-envelope outer magnetic pole components and the pagoda-shaped inner magnetic pole component; the bottom plate is attached to a bottom part of each of the wide-envelope outer magnetic pole components and a bottom part of the pagoda-shaped inner magnetic pole component; and the top plate is attached to an upper part of each of the wide-envelope outer magnetic pole components.
Abstract:
A magnetic pole structure for a Hall thruster is provided. The magnetic pole structure includes: multiple wide-envelope outer magnetic pole components, a magnetic bridge, a pagoda-shaped inner magnetic pole component, a top plate, and a bottom plate, where the multiple wide-envelope outer magnetic pole components are arranged on an outer edge of the Hall thruster, symmetrical about the pagoda-shaped inner magnetic pole component, and enclose a semi-open structure; the magnetic bridge is located between each of the wide-envelope outer magnetic pole components and the pagoda-shaped inner magnetic pole component; the bottom plate is attached to a bottom part of each of the wide-envelope outer magnetic pole components and a bottom part of the pagoda-shaped inner magnetic pole component; and the top plate is attached to an upper part of each of the wide-envelope outer magnetic pole components.
Abstract:
A cusped-field thruster for a space system, wherein the cusped-field thruster comprises: at least two substantially annular permanent magnets arranged in an antipolar manner, wherein a magnetic pole piece is formed between the permanent magnets, and an anode, which comprises a permanent-magnetic material. The cusped-field thruster is configured such that a cusp is formed in a region adjacent to the anode of the cusped-field thruster.
Abstract:
An ion accelerator includes: an inner magnet having a channel extending through it in an axial direction; an outer magnet extending around the inner magnet, the magnets having like polarities so as to produce a magnetic field having two locations of zero magnetic field strength. The locations are spaced apart in the axial direction; and an anode and a cathode are arranged to generate an electrical potential difference between the locations.
Abstract:
A Hall effect thruster includes at least one tank of gas under high pressure, a pressure regulator module, a gas flow rate control device, an ionization channel, a cathode placed in a vicinity of an outlet from the ionization channel, an anode associated with the ionization channel, an electrical power supply unit, an electric filter, coils for creating a magnetic field around the ionization channel, and an additional electrical power supply unit for applying a pulsating voltage between the anode and the cathode.
Abstract:
In a Hall thruster 10, an acceleration channel 12 ionizes propellant flowing into an annular discharge space 11 to generate ions, and accelerates and discharges the generated ions. A distributor 37 supplies propellant from a plurality of holes 13 arranged azimuthally, via an anode 14 penetrating to the discharge space 11 of the acceleration channel 12, to the discharge space 11 of the acceleration channel 12, an amount of the propellant varying according to positions of the plurality of holes 13, thereby generating a plurality of regions, between adjacent ones of which the mass flow rate of the propellant is different, azimuthally in the discharge space 11 of the acceleration channel 12. During that time, the distributor 37 adjusts, with respect to the mass flow rate of the propellant in the discharge space 11 of the acceleration channel 12, a differential within a range of 5 to 15% between the mass flow rate of the propellant in a region with a large mass flow rate of the propellant and the mass flow rate of the propellant in a region with a small mass flow rate of the propellant. Thus, the width of a operation parameter region with reduced discharge current oscillation of the Hall thruster 10 is expanded.
Abstract:
This invention relates to a thruster apparatus applicable to the environment of a space vehicle or satellite and operable for positioning such vehicle or satellite in the proper orbital location. The device utilizes a unique configuration of passageways to convey the propellant to a location adjacent an electrical arc forming device. The propellant, heated thereby, then travels out a nozzle section of the thruster to thereby produce thrust. If desired, an external heater may be provided to preheat the thruster to thereby contribute to greater efficiency in the use of propellant. Further, if desired, the thruster may include an accelerator extension.
Abstract:
A satellite propulsion system and methods of operating the same include a first ionization stage and a second acceleration stage. The first ionization stage has a plasma source configured to produce an arc discharge and emit a preliminary plasma. The plasma source includes an external magnetic field configured to magnetize the arc discharge. The second acceleration stage has an accelerator positioned in series with the plasma source. The accelerator is configured to accelerate the preliminary plasma out through the accelerator, thereby creating an accelerated plasma flow. The application of an activation threshold voltage to the accelerator results in a surge in system performance parameters.
Abstract:
A Hall-effect thruster assembly includes a plurality of magnetic sources for creating a magnetic circuit. The plurality of magnetic sources are positioned between a first end and a second, opposite end of the Hall-effect thruster. The plurality of magnetic sources define a longitudinal axis extending through the first end and the second end. The first end is configured as a discharge end. A mount assembly is coupled to the second end. The mount assembly is configured to secure the plurality of magnetic sources to a spacecraft. A magnetic element is supported by the mount assembly. The magnetic element is positioned relative to the plurality of magnetic sources by the mount assembly.