Abstract:
The invention proposes a method for manufacturing a grille for a cascade type thrust reverser, of a jet engine, said method including the following steps:
a) manufacturing a first component comprising continuous or long fibres, pre-impregnated by a thermoplastic or thermosetting resin; b) manufacturing, subsequently or together with step a), a series of second components each including discontinuous fibres, pre-impregnated by a thermoplastic or thermosetting resin, step b) being carried out such that the second components are, on the one hand, arranged transversally with respect to a longitudinal direction of the first component on at least one side of the first component and, on the other hand, spaced from one another according to this longitudinal direction, so as to form a comb-shaped structure, wherein the second components are consolidated to the first component.
Abstract:
A method for manufacturing a cascade for a thrust reverser for a jet engine includes forming a strip assembly. The strip assembly includes a strong back member which includes a length. The strip assembly includes a plurality of first vane members which extend from a first side of the strong back member in a first direction nonparallel relative to the length of strong back member wherein the plurality of the first vane members are spaced apart from one another along the length of the strong back member.
Abstract:
A pivot thrust reverser includes a first tandem pivot door subassembly comprising an inner panel and an outer panel. The inner panel and outer panel are connected by a first sliding rail. A second tandem pivot door subassembly is included comprising an inner panel and an outer panel. The inner panel and outer panel are connected by a second sliding rail.
Abstract:
One embodiment includes a pivot thrust reverser. The pivot thrust reverser includes a first tandem pivot door subassembly comprising an inner panel and an outer panel. The inner panel and the outer panel are connected so as to rotate simultaneously about respective pivot axes that are each positionally fixed axes relative to the gas turbine engine assembly. A second tandem pivot door subassembly is included, spaced from the first tandem pivot door subassembly and comprising an inner panel and an outer panel. The inner panel and the outer panel are connected so as to rotate simultaneously about respective pivot axes that are each positionally fixed axes relative to the gas turbine engine assembly.
Abstract:
A method for monitoring a locking system includes N locks, each lock being monitored by two locking sensors, each locking sensor being capable of indicating if the lock that it monitors is in a locked or unlocked state, each locking sensor being able to be in a valid or invalid status, the method including determining the state of the locking system on the basis of the state of the locks detected by the locking sensors; determining a reliability level associated with the state of the locking system on the basis of the number of valid locking sensors monitoring the locks that are in the same state as the locking system.
Abstract:
A pivot thrust reverser includes a first tandem pivot door subassembly comprising an inner panel and an outer panel. The inner panel and outer panel are connected by a first sliding rail. A second tandem pivot door subassembly is included comprising an inner panel and an outer panel. The inner panel and outer panel are connected by a second sliding rail.
Abstract:
Aspects of the disclosure are directed to a thrust reverser of an aircraft, comprising: a wall having a first surface that partially forms a flow channel associated with an air flow, a blocker door having a second surface that partially forms the flow channel, and a dielectric elastomeric device that is configured to selectively expand and contract within a cavity formed between the wall and the blocker door where the cavity is substantially radially adjacent to the flow channel when the thrust reverser is in a stowed state.
Abstract:
A nacelle for an aircraft turbojet engine includes: a substantially cylindrical internal envelope, a substantially cylindrical external envelope, a downstream partition wall and an upstream partition wall secured to the cylindrical internal envelope and a front lip disposed forward of the upstream partition wall. The cylindrical internal envelope includes an upstream portion including an acoustic shroud connected, by an attachment flange, to a downstream portion including a fan casing. In particular, the front lip is extended and disposed over the upstream partition wall by presenting a downstream edge between the upstream and downstream partition walls in order to be secured to a homologous edge of the cylindrical external envelope so as to arrange a maintenance access to the attachment flange
Abstract:
A gas turbine engine has a fan inlet and a fan configured to deliver air to an exhaust nozzle. A core gas turbine engine. including in serial order extending further into the engine, a core turbine section, a combustor and a core compressor section. A core engine inlet duct is spaced from the fan inlet. A method is also described.
Abstract:
A propulsion system has a nacelle, and inside this nacelle, a dual flow turbojet engine includes a fan case in which are located a fan and an assembly of fixed flow-rectifying vanes. This propulsion system includes a thrust inverter located between the fan and the assembly of the fixed flow-rectifying vanes. In particular, the thrust inverter includes a plurality of windows formed in the fan case and thrust inversion flaps to send back the secondary airflow toward the outside and toward the front of the nacelle, through the windows. The thrust inversion flaps pivotally move between a normal operating position in which they allow the passage of the secondary airflow and block the windows, and a thrust inversion position in which they block the passage and clear the windows.