摘要:
A microstructure is formed in a viscous glass or plastic substrate by pressing a structured surface of a forming tool corresponding to a negative of the microstructure to be produced in the viscous glass or plastic substrate. After the microstructure has been formed, the forming tool is removed from the surface. In order to help form the microstructure and remove the forming tool from the substrate the forming tool has an at least partially porous base body (1) and an operative layer (2) structured with a negative structure consisting of grooves (11) extending to the porous base body (1). The forming of the microstructure in the substrate is assisted by applying suction to the porous base body (1) so that the grooves (11) fill more easily and completely with melted glass or plastic material. The removal of the forming tool after forming the microstructure is assisted by applying an overpressure to the porous body to help release the solidified glass or plastic material from the forming tool.
摘要:
(1) Alignment mark transfer portion(s) is/are formed on the transfer molding surface of a mold that is used for press-molding a optical element fixing member and having alignment marks; (2) alignment mark(s) is/are formed on the mold material by dry-etching, and the mold material is worked using the alignment mark(s) as a reference to form the transfer molding surface constituted by a plurality of transfer patterns, in order to obtain a mold for press-molding; and (3) the transfer patterns are formed by dry-etching, or a transfer molding bare surface for transfer patterns is formed by dry-etching and a mold release film is formed thereon to reflect the shape of the transfer molding base surface, in order to obtain a mold for press-molding.
摘要:
This invention is directed to a mold for molding a substrate comprising upper and lower mold parts, said mold being provided with one or more guide grooves in a predetermined position within the opposing internal surfaces of the upper and lower mold parts to receive one or more guide members, and being interposed between the internal surfaces at the predetermined position to maintain the vertical and horizontal alignment positions constant. A substrate having a pattern corresponding to the predetermined patterns with high precision in vertical and horizontal positions on both upper and lower sides thereof is molded by pressing simultaneously one or more of the guide members received in the guide grooves and the molding material charged in a space defined by the opposing internal surfaces.
摘要:
In a method for molding glass products having a fine structure as of an optical fiber holder with a high size precision, a mold used for the molding has the fine structure in a size such that a size difference occurring when the glass product is cooled down to a room temperature where at the end of molding with a pressure a size of the fine structure of the mold for glass product and a size of a fine structure of the glass product formed by transfer of the fine structure of the mold are the same as one another is so adjusted that a size of the fine structure of the completed glass product falls within a permissive size precision range. The mold may has a size satisfying, as a size of a fine structure at a room temperature, a formula [1+(.alpha.g-.alpha.m).times..DELTA.T+.alpha.g'.times..DELTA.T'].times.Sg, wherein Sg denotes a size of a fine structure of thc glass product at the room temperature; .alpha.g denotes a mean thermal expansion coefficient of the glass to be molded in a temperature range from the room temperature to the glass transition temperature of the glass to be molded; .alpha.m denotes a mean thermal expansion coefficient of the mold in a temperature range from the room temperature to the glass transition temperature of thc glass to be molded; .DELTA.T denotes a difference between the room temperature and the glass transition temperature of the glass to be molded; .DELTA.T' denotes a difference between a temperature at which the mold's pressure exerted to the glass product is released and the glass transition temperature, in a case where the mold's pressure exerted to the glass product is released at a temperature higher than the glass transition temperature after pressing the mold with a high pressure; and .alpha.g' is a thermal expansion coefficient of the glass to be molded at a mean temperature of summation of the glass sag temperature and the glass transition temperature.
摘要:
A molding die has a shell having a penetration hole, a lower pattern installed in the lower opening of the shell, and an upper pattern slidably disposed from the upper opening of the shell. The shell includes an outer shell and an inner shell disposed inside of the outer shell. The inner shell is includes plural split shells. The inner shell can be separated from the outer shell. The inner shell, lower pattern, and upper pattern form a cavity. As a result, if the molded product sticks to the inner circumference of the shell, the molded product can be easily taken out of the molding die by disassembling the shell. Further, a molded product having an excellent dimensional precision can be manufactured.
摘要:
A SiO2—Al2O3—Li2O component-based glass material, which comprises, as basic components, SiO2: 60-63 wt %; Al2O3: 23-25 wt %; and Li2O: 4-5 wt % and, as modifying components, ZrO2: 1.5-2.5 wt %; TiO2: 0.5-2.5 wt %; MgO: 0.5-1.5 wt %; ZnO: 0.5-1.2 wt %; Na2O: 0.5-2.0 wt %; and K2O: 0.5-2.0 wt %, and further comprises any one of BaO: 0.5-1.0 wt, CaO: 1.0-2.0 wt %, and B2O3: 0.01-1.0 wt %. This can be reheat-formed in a glass state and has a low thermal expansion coefficient.
摘要翻译:作为基本成分的SiO 2·Al 2 O 3·Li 2 O成分为基础的玻璃材料为SiO 2:60〜63重量% Al2O3:23-25重量% 和Li 2 O:4-5重量%,作为改性成分,ZrO 2:1.5〜2.5重量% TiO 2:0.5〜2.5重量% MgO:0.5〜1.5重量% ZnO:0.5-1.2重量% Na2O:0.5-2.0重量% K2O:0.5〜2.0重量%,进一步含有BaO:0.5〜1.0重量%,CaO:1.0〜2.0重量%,B 2 O 3:0.01〜1.0重量%。 这可以在玻璃状态下重新加热并具有低的热膨胀系数。
摘要:
A manufacturing method for a glass product not having a rotatively symmetric body like an optical fiber fixing member but having a fine structure as of optical fiber engagement portions, to transfer the fine structure with a high precision without creating molding burrs, includes the steps of placing a glass material in a cavity defined by a lower mold, an upper mold, and a side mold, molding the glass material in the cavity with pressure into the glass product in so controlling that the glass material has a viscosity range of 106.5 to 109.5 poises at the beginning of molding operation with pressure, that the lower mold is at a temperature in a range such that the glass material indicates the above viscosity range, and that the upper and side molds are at a temperature in a range such that a converted viscosity of the glass material at the temperature of the upper and side molds is 5 to 100 times higher than the viscosity of the glass material at the temperature of the lower mold, and decreasing the temperature of the lower mold at the same time that or after the glass product begins to be molded with pressure. To produce an optical fiber fixing member, the lower mold has a mold face for molding optical fiber engagement portions of the optical fiber fixing member; the upper mold has a mold face for molding a bottom of the optical fiber fixing member; and the side mold has a mold face for molding a side face of the optical fiber fixing member
摘要:
A preform used for producing an optical fiber fixing member having an optical fiber fixing part and a lower-staged part by a mold shaping method, is formed so as to be composed of a large-thickness portion having an upper surface or a peak portion to which that transfer-shaping surface of transfer-shaping surfaces of a shaping mold which is to shape the said optical fiber fitting portion(s) comes into contact at an initial stage of mold shaping, and a small-thickness portion having an upper surface or a peak portion to which that transfer-shaping surface of transfer-shaping surfaces of the shaping mold which is to shape the upper surface of the lower-staged part comes into contact at an initial stage of the mold shaping, the preform being formed in a configuration in which the said small-thickness portion is adjacent to the large-thickness portion, the form of the preform viewed as a plan view parallels with the form of the said optical fiber fixing member viewed as a plan view and the form of the preform viewed as a side view parallels with the form of the said optical fiber fixing member viewed as a side view, whereby the above optical fiber fixing member can be easily produced by a mold shaping method.
摘要:
A manufacturing method for a glass product not having a rotatively symmetric body like an optical fiber fixing member but having a fine structure as of optical fiber engagement portions, to transfer the fine structure with a high precision without creating molding burrs, includes the steps of placing a glass material in a cavity defined by a lower mold, an upper mold, and a side mold, molding the glass material in the cavity with pressure into the glass product in so controlling that the glass material has a viscosity range of 10.sup.6.5 to 10.sup.9.5 poises at the beginning of molding operation with pressure, that the lower mold is at a temperature in a range such that the glass material indicates the above viscosity range, and that the upper and side molds are at a temperature in a range such that a converted viscosity of the glass material at the temperature of the upper and side molds is 5 to 100 times higher than the viscosity of the glass material at the temperature of the lower mold, and decreasing the temperature of the lower mold at the same time that or after the glass product begins to be molded with pressure. To produce an optical fiber fixing member, the lower mold has a mold face for molding optical fiber engagement portions of the optical fiber fixing member; the upper mold has a mold face for molding a bottom of the optical fiber fixing member; and the side mold has a mold face for molding a side face of the optical fiber fixing member.
摘要:
A microstructure is formed in a viscous glass or plastic substrate by pressing a structured surface of a forming tool corresponding to a negative of the microstructure to be produced in the viscous glass or plastic substrate. After the microstructure has been formed, the forming tool is removed from the surface. In order to help form the microstructure and remove the forming tool from the substrate the forming tool has an at least partially porous base body (1) and an operative layer (2) structured with a negative structure consisting of grooves (11) extending to the porous base body (1). The forming of the microstructure in the substrate is assisted by applying suction to the porous base body (1) so that the grooves (11) fill more easily and completely with melted glass or plastic material. The removal of the forming tool after forming the microstructure is assisted by applying an overpressure to the porous body to help release the solidified glass or plastic material from the forming tool.