Abstract:
An apparatus and a process for carbonating liquids, has inlet pipes for admitting a carbonating gas and a liquid into a container and outlet pipes for dispensing the carbonated mixture from the container. Cooling coils are provided in the container for forming an interior and an exterior surrounding ice layer so that the mixture can come into thermal contact with at least the interior ice layer and be cooled thereby. Electrodes are provided for preventing the thickness of at least the interior ice layer from exceeding a predetermined value.
Abstract:
A modular beverage dispenser for engagement with bag-in-box or other source of pressurized concentrate and a pressurized ambient water source, such as city water, is provided. The dispenser has a housing having housing walls, the walls defining an interior space, the interior having interior walls defining a multiple of interior spaces. The housing engages either a flange (configured to engage a perimeter of a countertop drop-in cutout) or legs configured to depend downward from the housing to support the same above a support surface. An ice container is provided for receiving ice therein configured to engage the housing so as to be substantially within the interior space. A cold plate is provided with a multiplicity of cold plate contained fluid lines therein adapted to engage the ice container so as to be cooled by the contents thereof. A carbonator is located in a first interior space. A carbonator pump and motor is located in a second interior space. A flow control and manifold assembly is provided, including a python and a bar gun having a nozzle adapted to dispense a beverage therefrom; a multiplicity of fluid lines are provided for engaging the cold plate containing the cold plate fluid lines, wherein the near ends of the fluid lines engage either a concentrate source (such as bag-in-box) or a water source, and the removed ends of the fluid lines engage the flow control and manifold assembly through a coupling member having an on/off switch. The cold plate includes an extension with a recess designed to receive at least some of the exterior of the carbonator. The multiplicity of fluid lines includes a line configured to pre-chill and post-chill the carbonated water, before delivering it to the coupling member.
Abstract:
A cold plate includes a cold plate body. A tubing system is embedded within the cold plate body. The tubing system includes a prechill circuit, a plain water postchill circuit fluidly connected to the prechill circuit, and a carbonated water postchill circuit fluidly connected to the prechill circuit.
Abstract:
Selecting and dispensing multiple brand beverages at a dispenser apparatus from a dispenser may be provided. A first and second user input indicating a beverage and flavor respectively, may be received at a user interface. Where an individual beverage concentrate or flavor has been exhausted a control device may switch to a remaining beverage concentrate or flavor. Furthermore, the control device can output a signal to a user via the user interface. The user interface may indicate a no or low flow condition by highlighting the specific icon, providing a small indication over the specific icon, or other visual indicators in association with a sold-out brand on the user interface. Where the specific beverage concentrate or flavor has been replenished, a sensor may detect a replenished beverage concentrate or flavor. Subsequently, the control device may remove the signal sent to a user via the user interface.
Abstract:
A modular beverage dispenser for engagement with bag-in-box or other source of pressurized concentrate and a pressurized ambient water source, such as city water, is provided. The dispenser has a housing having housing walls, the walls defining an interior space, the interior having interior walls defining a multiple of interior spaces. The housing engages either a flange (configured to engage a perimeter of a countertop drop-in cutout) or legs configured to depend downward from the housing to support the same above a support surface. An ice container is provided for receiving ice therein configured to engage the housing so as to be substantially within the interior space. A cold plate is provided with a multiplicity of cold plate contained fluid lines therein adapted to engage the ice container so as to be cooled by the contents thereof. A carbonator is located in a first interior space.
Abstract:
A modular beverage dispenser for engagement with bag-in-box or other source of pressurized concentrate and a pressurized ambient water source, such as city water, is provided. The dispenser has a housing having housing walls, the walls defining an interior space, the interior having interior walls defining a multiple of interior spaces. The housing engages either a flange (configured to engage a perimeter of a countertop drop-in cutout) or legs configured to depend downward from the housing to support the same above a support surface. An ice container is provided for receiving ice therein configured to engage the housing so as to be substantially within the interior space. A cold plate is provided with a multiplicity of cold plate contained fluid lines therein adapted to engage the ice container so as to be cooled by the contents thereof. A carbonator is located in a first interior space.
Abstract:
The present application provides a beverage dispenser for mixing a flow of concentrate, a flow of water, and a flow of gas. The beverage dispenser may include a carbonator with a water input in communication with the flow of water, a gas input in communication with the flow of gas, a carbonated water output, and a chilling reservoir in communication with the flow of water, and a dispensing nozzle in communication with the flow of concentrate and a flow of carbonated water from the carbonated water output of the carbonator.
Abstract:
In a method and a device for cooling and carbonating a liquid (20), carbon dioxide intended for carbonating is also used for cooling, the carbon dioxide being brought to expand in a room (4; 7) which is separate from the liquid (20) but which is thermally connected to the liquid. By the invention it is achieved that an ice bank is formed in the liquid in the area which is adjacent to said expansion room (4; 7) whereby is achieved i.a. better cooling control than in previously known devices where the carbon dioxide also is used for cooling.