Abstract:
Star tracker systems and methods are provided. The star tracker incorporates deep learning processes in combination with relatively low cost hardware components to provide moderate (e.g. ˜1 arc second attitude uncertainty) accuracy. The neural network implementing the deep learning processes can include a Hinton's capsule network or a coordinate convolution layer to maintain spatial relationships between features in images encompassing a plurality of features. The hardware components can be configured to collect a blurred or defocused image in which point sources of light appear as blurs, and in which the blurs create points of intersection. Alternatively or in addition, a blurred or defocused image can be created using processes implemented as part of application programming. The processing of collected images by a neural network to provide an attitude determination can include analyzing a plurality of blurs and blur intersections across an entire frame of image data.
Abstract:
Systems and methods are provided for high fidelity long-duration autonomous spacecraft navigation relative to a planet's surface and measuring the dynamics of the planet. For a planet like Earth, embodiments of the present disclosure can be used to estimate the unpredictable components of Earth's orientation with respect to the inertial frame. Embodiments of the present disclosure further enable autonomous landmark navigation by providing systems and methods for satellites to autonomously recognize landmarks, using, for example, multiple computer vision approaches to recognize multiple types of landmarks.
Abstract:
A torque generation system includes: a plurality of solar array panels and/or solar array panel divisions; and a torque controller configured to control an electricity generation ratio of each of the plurality of solar array panels and/or solar array panel divisions to generate torque.
Abstract:
A hybrid network of kinematic sensors of an AOCS, made up of a star sensor including an optical camera head, and a processing unit provided as the central master processing unit, and additional kinematic sensors, each made up of a sensor element and a processing unit connected to the central processing unit via a first bus. An additional processing unit is equivalent to the processing unit and is a redundant central processing unit. The central processing units and—are connected via an additional bus of a spacecraft provided with the hybrid network with the aid of a central computer. The particular active central processing units-provide all kinematic sensors with a uniform time pulse via a synchronization line, and supply the central computer with hybridized kinematic measuring data formed according to a method for hybridization based on the synchronous kinematic measuring data of the star sensor and the measuring data of the other sensors.
Abstract:
Methods and apparatus to methods and apparatus for performing propulsion operations using electric propulsion system are disclosed. An example method includes deploying a space vehicle including an electric propulsion system; and using the electric propulsion system for attitude control and orbit control, no other propulsion system provided to enable the attitude control and the orbit control.
Abstract:
A system and method for mitigating an occurrence of a dry spot, the method may include: (1) predicting the occurrence of the dry spot by at least one of determining a location of the occurrence of the dry spot, determining a date of the occurrence of the dry spot, and determining a duration of the occurrence of the dry spot; (2) generating a visualization of the occurrence of the dry spot, and (3) modifying a star catalog to reduce an impact of the dry spot by at least one of generating a set of modification to modify the star catalog, generating a modification schedule for modifying the star catalog, and uploading the set of modifications to the star catalog.
Abstract:
Apparatus and methods for raising the orbit of a satellite having electric propulsion thrusters, an Earth sensor and an inertial reference sensor such as a gyro. A satellite positioning system generates orbital data and a profile generator generates an ideal electric orbit raising profile of the satellite. The ideal profile is one that the satellite must follow so that the perigee, apogee and inclination of the satellite can be adjusted simultaneously in a mass-efficient manner. A state machine processes the ideal profile and a true anomaly to generate a desired electric orbit raising profile. Steering apparatus generates signals that are used to control the attitude of the satellite to follow the desired profile. The desired profile places the satellite in an Earth-pointed attitude when the satellite is at a predefined point in the orbit, slews the satellite from the Earth-pointed attitude to an ideal orbit raising attitude, steers the satellite according to the ideal profile during orbit raising, and steers the satellite from the desired attitude to the Earth-pointed attitude.
Abstract:
A space debris remover aiming to remove a space debris object in earth orbits. Angular thrust calculation unit calculates angular thrust. Radial thrust calculation unit calculates radial thrust based on the angular thrust, estimated angular momentum and estimated space debris mass. A foam bonding mechanism connects the space debris remover and the space debris object. A space debris removal controller calculates firing time, and sends a space debris removal control signal comprising the radial thrust, the angular thrust and the firing time. A plurality of first stage thrusters generate the radial thrust and the angular thrust after the firing time. After the stage separator separates a first stage and a second stage of the space debris remover, a plurality of second stage thrusters generate the radial thrust and the angular thrust, and propel the space debris object towards the sun.
Abstract:
Stored momentum on a spacecraft is managed by determining a target profile of stored momentum as a function of time for the spacecraft; measuring a difference between a momentum value actually stored on the spacecraft and a desired momentum value, where the desired momentum value substantially conforms to the target profile at a particular time; reducing the difference by producing a torque on the spacecraft, where the torque results from selectively controlling at least one solar array position offset angle, the offset angle being an offset of at least one solar array of the spacecraft from a nominal sun pointing direction.
Abstract:
An attitude estimator that uses star tracker measurements and enhanced Kalman filtering, with or without attitude data, to provide three-axis rate estimates. The enhanced Kalman filtering comprises taking an average of forward and rearward propagations of the Kalman filter states and the error covariances. The star tracker-based rate estimates can be used to control the attitude of a satellite or to calibrate a sensor, such as a gyroscope.