Abstract:
Systems and methods for mechanically rotating an aircraft about its center-of-gravity (CG) are disclosed. The system can enable the rear, or main, landing gear to squat, while the nose landing gear raises to generate a positive pitch angle for the aircraft for takeoff or landing. The system can also enable the nose gear and main gear to return to a relatively level fuselage attitude for ground operations. The system can include one or more hydraulically linked hydraulic cylinders to control the overall height of the nose gear and the main gear. Because the hydraulic cylinders are linked, a change on the length of the nose cylinder generates a proportional, and opposite, change in the length of the main cylinder, and vice-versa. A method and control system for monitoring and controlling the relative positions of the nose gear and main gear is also disclosed.
Abstract:
An aircraft wheel having a rim having brake discs driving keys (21). The wheel has a rotational driver mechanism (210) which includes a drive gear (211) associated with coupling members (212) of the drive gear to the rim of the wheel. The coupling members are fixed to the rim by fixing members (220) introduced into orifices of the rim extending at an end of the keys which are also used to hold heat shields protecting the rim.
Abstract:
Wheel drive system, particularly for the ground circulation of an aircraft comprising a motor unit (22) borne by an unsuspended part (14b) of a landing gear strut (14) of the aircraft and comprising an electric motor (26) and reduction means, and a clutch device (24) connecting the output shaft (26a) of the electric motor (26) to the wheel (12) via the reduction means.The clutch device (24) comprises a dog-clutch mechanism (32, 34) comprising a drive part (32) secured to the motor unit (22) and a receiving part (34) secured to the rim (12b) of the wheel (12), and a system for the translational movement, along the axis of the axle crossbeam (20) of the landing gear strut (14), of the drive part (32) into an engaged position in which the drive part (32) collaborates with the receiving part (34) and a disengaged position in which the drive part (32) is separated from the receiving part (34).
Abstract:
A tire spinning assembly for includes a tire that may be coupled to landing gear of an aircraft. A plurality of vanes is coupled to the tire. The vanes are frictionally engaged by air when the landing gear are deployed thereby rotating the tire. The vanes are oriented such that the tire is rotated in a direction and a speed corresponding to a direction and a speed traveled by the aircraft. The rotation of the tire reduces an amount of friction between the outer wall and ground when the aircraft lands.
Abstract:
A driving device for driving a wheel of an airplane in a direction same as that of a revolution of the wheel after landing, includes a revolution drive disc having a flat ring plate having an attachment portion adapted to attach on a side surface of a tire of the wheel; and a plurality of fins arranged on the ring plate. The plurality of fins is obliquely arranged on an outer side surface of the ring plate so that when the plurality of fins receives relative atmospheric air flow, a torque generated by the fins at a lower side of the tire in the direction same as that of the revolution of the wheel after landing is larger than a torque generated by the fins at an upper side of the tire in a direction reverse to that of the revolution of the wheel after landing.
Abstract:
In the proposed method, each landing gear wheel is rotated with the aid of one of the radial- or axial-type air turbines which are mounted on said wheel, rotate in opposite directions and to which compressed air from the main engines or from an auxiliary power-generating plant of the aircraft is fed. The wheels are spun by one of the turbines before landing or during forwards movement on the ground, while the other turbine is used for braking after touchdown, and also for reversing and for turns when manoeuvring. Air is also used for bleeding and cooling a wheel brake. Non-communicating air collectors of the turbines are connected by a telescopic pipe, which is fastened on a landing gear leg, via control valves to on-board compressed-air sources. Brake stator discs have through-channel sectors and are nozzle diaphragms, while rotor discs have through-channels arranged uniformly around the circumference and are working wheels of the axial turbine. Nozzle apparatuses of the radial turbine are mounted on the stator, while the working wheel is mounted on the internal rim of the landing gear wheel. The nozzle apparatuses are connected by sector air ducts to the corresponding air collectors.
Abstract:
The invention disclosed is a self-propelled aircraft undercarriage for driving an aircraft on the ground, comprising: an axle; a strut supporting said axle; at least one wheel rotatably mounted on said axle; and drive means for driving said at least one wheel; characterized in that said drive means is disk shaped and is external to said wheel. In one embodiment of the invention, said drive means is mounted on said axle between said strut and said wheel. In a second embodiment, said drive means is mounted on said axle, on the side of said wheel furthest from said strut.
Abstract:
An apparatus for driving a taxiing aircraft is disclosed, comprising, in an aircraft, two self-propelled nosewheels, each having an electric motor; equipment for flight; dual-function controlling means for controlling said equipment for flight and said nosewheels, said dual-function controlling means being disposed in the cockpit of said aircraft; sensing means; and switching means, —wherein said switching means are operable to switch the function of said dual-function controlling means between controlling said equipment for flight and controlling said nosewheels. Said dual function controlling means may control speed and/or steering of the aircraft. Second controlling means may be provided, and may be disposed externally to the aircraft.
Abstract:
The invention disclosed is a self-propelled aircraft undercarriage for driving an aircraft on the ground, comprising: an axle; a strut supporting said axle; at least one wheel rotatably mounted on said axle; and drive means for driving said at least one wheel; characterized in that said drive means is disk shaped and is external to said wheel. In one embodiment of the invention, said drive means is mounted on said axle between said strut and said wheel. In a second embodiment, said drive means is mounted on said axle, on the side of said wheel furthest from said strut.
Abstract:
An auxiliary on board power system for an aircraft provides the capability of taxiing the aircraft on the ground without using the main aircraft engine(s). The power system includes a small driver mounted on the aircraft. In one embodiment of the invention, the driver may be mounted at any desirable location on the aircraft and is designed to provide sufficient thrust to taxi the aircraft. Such a suitable system may be provided as original equipment to an aircraft or retrofitted to existing aircraft. In another embodiment of the invention, the driver includes a speed reducer with an output shaft to drive the wheels of one of the landing gear assemblies to provide power to taxi the aircraft. In a further embodiment of the invention, the auxiliary on board power system, in addition to the taxiing function, may be incorporated with an alternator to provide electrical power, an environmental control unit, and an emergency power units as desired.