摘要:
The invention concerns a device for the active control of a force feedback for a control device, comprising a calculator, a position sensor (3) configured to provide the calculator with an effective position signal (Pm) of the control device, and an actuator (2) ensuring the displacement of the control device at the command of the calculator, the calculator being configured to use the effective position signal and modulate a setpoint current (lc) delivered to the actuator to ensure the position feedback of the displacement of the control device, characterized in that the calculator is further configured to create at least one saturation terminal (Bsat+, Bsat−) according to a predetermined function of the value of the effective position signal of the position/force law kind, and to saturate the setpoint current using the at least one saturation terminal.
摘要:
An improved flight control system is described, providing for increased or reduced pilot input forces necessary to cause desired control surface deflections.
摘要:
A rope drive anchoring assembly includes a pulley, a rope, and a rope connector. The pulley is adapted to be rotationally mounted and has an inner surface, an outer surface, and a fastener opening extending between the inner and outer surfaces. The rope engages at least a portion of the outer surface of the pulley and is adapted to receive a drive torque, which causes the pulley to rotate. The rope connector couples the rope to the pulley, and includes a fastener, a threaded bolt, and a spring. The fastener extends through the fastener opening, and has a first end, a second end, an outer surface, and an opening through which the rope extends. The threaded bolt is threaded onto the fastener threads, and the spring is disposed between the threaded bolt and the inner surface of the pulley.
摘要:
The invention concerns a device for the active control of a force feedback for a control device, comprising a calculator, a position sensor (3) configured to provide the calculator with an effective position signal (Pm) of the control device, and an actuator (2) ensuring the displacement of the control device at the command of the calculator, the calculator being configured to use the effective position signal and modulate a setpoint current (lc) delivered to the actuator to ensure the position feedback of the displacement of the control device, characterised in that the calculator is further configured to create at least one saturation terminal (Bsat+, Bsat−) according to a predetermined function of the value of the effective position signal of the position/force law kind, and to saturate the setpoint current using the at least one saturation terminal.
摘要:
A system for adjusting tactile cues includes a controller having an axis and a cross-axis; an axis tactile cue generated in response to the position of the controller along the axis; a position scaling unit scaling a cross-axis controller position to generate a scaled cross-axis controller position; a force scaling unit scaling a cross-axis controller force to generate a scaled cross-axis controller force; a combiner combining the scaled cross-axis controller position and the scaled cross-axis controller force to generate an adjustment factor; and an adjuster adjusting the axis tactile cue in response to the adjustment factor to generate an adjusted axis tactile cue.
摘要:
A servo-controlled system is disclosed for providing simulated feel equivalent to that of traditional mechanical hand controllers. Processed position and force sensor signals are used in a feedback loop that controls the motor mechanically connected to the stick. The feedback loop comprises a low-level motor feedback loop, and high-level force feel loop. The latter comprises static and dynamic performance components. The system allows variable and additional force cues to be specified externally to the system and felt by the operator, and/or external signal to backdrive the stick to follow a specified motion. The control framework permits the electronic coupling of the motion and applied forces by pilots in a dual arrangement while retaining the above-mentioned features. It simulates cross-coupling mechanical compliance due to force fight between pilots, detents and asymmetric force feel gradients. Parameters associated with loops and performance components can be specified independently.
摘要:
An active user interface assembly includes a user interface, and one or more feedback motors coupled to the user interface. The one or more feedback motors, when energized, supply a feedback force to the user interface that opposes user interface movement. One of the feedback motors is disposed such that its center of gravity is located at a position relative to the user interface to mass balance the user interface when it is in the null position. The configurations allow for the center of gravity of a feedback motor to be positioned in a manner that alleviates the need for counterbalance weights.
摘要:
An active control stick assembly is provided. In one embodiment, the active control stick assembly includes a housing assembly, a control stick coupled to the assembly housing for rotation about at least a first rotational axis, a first artificial force feel (AFF) motor disposed in the housing assembly, and a first traction drive mechanically coupling the first AFF motor to the control stick. A controller is operatively coupled to the first AFF motor. The controller is configured to selectively activate the first AFF motor to supply a torque through the first traction drive and acting on the control stick about the first rotational axis.
摘要:
A variable rate limit is implemented in an active inceptor haptic feedback control system. The rate limit is modulated based on a rate error between an aircraft rate command supplied from the active inceptor, and actual aircraft rate. As the rate error increases, the rate limit is reduced, which limits inceptor movement and provides haptic feedback to a user when the rate error is exceeded.
摘要:
A device for artificially restoring an opposing force for a device for remotely controlling an aircraft control surface, the device comprising: an actuator member (1) mounted to pivot about an axis (2) and entrain a rotary shaft (3); a stationary finger (8) parallel to said shaft (3) and supported at a radial distance from the shaft; a moving finger (5) secured to the shaft and supported at the same radial distance as the stationary finger, both fingers being parallel to the shaft; a slab (9) supported at the same radial distance as the fingers and disposed beside them; a first spring (11) between the stationary finger and the slab; and a second spring (10) between the moving finger and the slab.