摘要:
A collapsible driveshaft and method of making the same. The collapsible driveshaft includes a tubular member having first and second portions that are integrally formed as a one-piece member. The first portion has splines formed on an exterior surface thereof. The second, opposite portion has both outer and inner diameters that are greater than the outer diameter of the first portion. The method includes placing a tubular metal blank into a hydroforming die having a die cavity and expanding the blank by pressurizing the interior of the blank with hydroforming fluid. During the hydroforming process, the first portion of the blank is expanded to form splines while the second portion is expanded to form inner and outer diameters that are greater than the outer diameter of the first portion.
摘要:
A forming device includes: an upper die and a lower die having forming surfaces corresponding to outer surfaces of a pipe with protrusions; a moving mechanism that moves the upper die and the lower die such that a forming space for forming the pipe with protrusions is defined between the forming surfaces of the upper die and the lower die; and a gas supply unit that supplies gas to a forming material which is the base of the pipe with protrusions to expand the forming material. A control unit controls the movement of the upper die and the lower die by the moving mechanism and the supply of gas to the forming material by the gas supply unit such that the forming material is formed into the pipe with protrusions in the forming space.
摘要:
A method of forming a flanged tubular member includes the steps of: positioning a tubular blank in a die; applying nominal pressure; closing the dies; and increasing pressure within the blank, thereby converting the tubular blank to a hydroformed member having the flange and a hem with a cavity therein. The die halves define: a die tubular cavity portion; a die hem cavity portion; and a die flange cavity portion. Upon closing the die halves with nominal pressure and then increasing pressure, (1) the blank is deformed within the die tubular cavity portion; (2) the flange is defined from a portion of the blank in the die flange cavity portion; and (3) at least an intermediate hem is defined in the die hem cavity portion.
摘要:
A method of forming a flanged tubular member includes the steps of: positioning a tubular blank in a die; applying nominal pressure; closing the dies; and increasing pressure within the blank, thereby converting the tubular blank to a hydroformed member having the flange and a hem with a cavity therein. The die halves define: a die tubular cavity portion; a die hem cavity portion; and a die flange cavity portion. Upon closing the die halves with nominal pressure and then increasing pressure, (1) the blank is deformed within the die tubular cavity portion; (2) the flange is defined from a portion of the blank in the die flange cavity portion; and (3) at least an intermediate hem is defined in the die hem cavity portion.
摘要:
A Moineau stator includes a tube (10) having lobes (3) arranged in a configuration which is adapted to interact with a rotor and formed through a hydroforming process.
摘要:
A pair of self-aligning non-pinching hydroforming dies have fingers and slots which are operable during closure of the dies on a tubular part to effect precise alignment of the dies as they are pressed together to form a hydroforming cavity about the part so that the part is not pinched between mating surfaces of the dies during their closure on the part. The fingers are further capable of mechanically straightening and/or bending the part, if need be, to prevent pinching of the part during die closure. The fingers are also capable of mechanically forming a round tubular part to a non-round cross-section region of the die cavity as the dies close to help form the part as well as prevent pinching of this section. With all such mechanical forming operations by the action of the fingers on the part performed prior to the hydroforming of the part in the die cavity.
摘要:
A process for forming a hollow member with A complicated cross-section wherein a section of a tube blank first undergoes a bending deformation due to its internal pressure and bend moment generated by the upsetting of an upper die, and is then compressed to be molded under the support of the internal pressure. The process of the invention does not require the reshaping step at an increased pressure. The process can make a hollow member with a complicated cross-section formed under a low pressure, and solves a technical bottleneck relating to a conventional process for forming this kind of members that is subject to an ultrahigh pressure generator.
摘要:
A process for forming a hollow member with A complicated cross-section wherein a section of a tube blank first undergoes a bending deformation due to its internal pressure and bend moment generated by the upsetting of an upper die, and is then compressed to be molded under the support of the internal pressure. The process of the invention does not require the reshaping step at an increased pressure. The process can make a hollow member with a complicated cross-section formed under a low pressure, and solves a technical bottleneck relating to a conventional process for forming this kind of members that is subject to an ultrahigh pressure generator.
摘要:
A Moineau stator includes a tube (10) having lobes (3) arranged in a configuration which is adapted to interact with a rotor and formed through a hydroforming process.
摘要:
A method for hydroforming a closed channel structural member that allows the perimeter to be increased, but which maintains a relatively uniform wall thickness throughout, includes the initial step of disposing a closed channel structural member, such as a tube, within a first hydroforming die defining a first die cavity. The inner surface of the first die cavity corresponds in cross sectional shape to the outer surface of the tube, but the perimeter of the first die cavity is somewhat larger than the perimeter of the tube enclosed therein. A preliminary hydroforming operation is then performed at a relatively high pressure to expand the tube into conformance with the first die cavity. Throughout most of this expansion, the outer surface of the tube does not engage the inner surface of the die cavity. As a result, as the perimeter of the tube is increase, the wall thickness thereof is decreased uniformly. The preliminarily expanded tube is then disposed within a second hydroforming die defining a second die cavity. The inner surface of the second die cavity corresponds in cross sectional shape to the desired final shape for the tube. When the second hydroforming die is closed, a final hydroforming operation is performed at a relatively low pressure to deform the tube into conformance with the second die cavity. Because the perimeter of the tube is approximately equal to the perimeter of the second die cavity, the wall thickness of the tube is unchanged by the final hydroforming operation.