摘要:
Disclosed are a slow-release inhibitor for high-magnesium sulfide mineral flotation and an application thereof, where the inhibitor is a nano colloidal particle of an alkaline earth fluoride such as CaF2 and BaF2 or a highly-reactive natural alkaline earth metal mineral powder. When applied to the flotation separation of a high-magnesium sulfide ore, the inhibitor can slowly release F ions to preferentially form a MgF2 layer on the magnesium-containing mineral surface, which provides a structure similar to MgF2 on a surface of oxidized gangue minerals such as magnesium oxide, changing surface electrical property of the magnesium-containing mineral, inhibiting heterogeneous coagulation of magnesium-containing minerals and sulfide ores due to electrostatic attraction and reducing entrainment, enveloping and agglomeration of gangue minerals to efficiently inhibit the flotation of oxidized gangue minerals such as magnesium oxide.
摘要:
The present invention discloses mining collector compositions containing sodium metabisulfite and a thiocarbonate compound. Flotation processes for recovering molybdenum from a copper-molybdenum concentrate using the collector compositions also are disclosed.
摘要:
Apparatus is providing featuring a synthetic bead having a solid-phase body with a surface, and being configured with a predetermined electric charge so as to respond to a corresponding predetermined electric field; and a plurality of molecules attached to at least part of the surface, the molecules comprising a functional group selected for attracting and attaching one or more mineral particles of interest to the molecules. Some combination of the solid-phase body or the surface may be configured from a polymer. The polymer may be polyethylenimine. The polyethylenimine may be engineered or configured to be highly charged so as to be used to collect the mineral particles of interest and then manipulated through and by the corresponding predetermined electric field.
摘要:
Methods for purifying one or more value materials are provided. The method can include contacting an aqueous mixture comprising a value material and a contaminant with a dispersant and a depressant to produce a treated mixture. A weight ratio of the dispersant to the depressant can be from about 1:1 to about 30:1. The method can also include recovering a purified product comprising the value material from the treated mixture. The purified product can have a reduced concentration of the contaminant relative to the aqueous slurry.
摘要:
A method of using the synergy of multiple depressants to improve the depression of iron sulphide without compromising the recovery of the valuable sulphide minerals in the flotation of non-ferrous metal sulphides, while reducing or eliminating the use of environmentally problematic chemicals such as polyamines. The method has significant economic and environmental benefits. The multiple depressants comprise at least one organic polymer, at least one sulphur-containing compound and/or at least one nitrogen-containing organic compound.
摘要:
Provided is a method for recovering oil from corn to ethanol production, the method comprising applying a formulation comprising (i) a compound of formula (I), in which R1-R3 are defined herein, (ii) an oil, and (iii) a metal oxide to a corn-based product from an ethanol production process. Also provided is a formulation effective for corn oil recovery comprising (i) a mixture of ethoxylated C14-18 mono- and diglycerides, (ii) an oil, and (iii) a metal oxide.
摘要:
A flocculant, according to embodiments of the present disclosure, includes a core nanoparticle and at least one positively charged functional group on a surface of the core nanoparticle. The nanoparticle may comprise a silica, alumina, titania, iron oxide, iron nitride, iron carbide, or a carbon-based nanoparticle. The flocculant may be used, in a method of bitumen recovery, to neutralize and agglomerate bitumen droplets and/or mineral particles derived from oil sands ore. The bitumen droplets agglomerate about the core nanoparticle of the flocculant to form bitumen flocs, while the mineral particles agglomerate about the core nanoparticle of the flocculant to form mineral flocs. The buoyant bitumen flocs may then separate from the dense mineral flocs to enable high-yield recovery of bitumen from oil sands.