Abstract:
Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract:
A method of making metal articles as well as sputtering targets is described, which involves deforming an ingot to preferred dimensions. In addition, products made by the process of the present invention are further described.
Abstract:
A tantalum-titanium alloy powder that is highly spherical is described. The alloy powder can be useful in additive manufacturing and other uses. Methods to make the alloy powder are further described as well as methods to utilize the alloy powder in additive manufacturing processes. Resulting products and articles using the alloy powder are further described.
Abstract:
Single crystalline nanoparticles that are tantalum nitride doped with at least one metal are described. The single crystalline nanoparticles can be doped with two metals such as Zr and Mg. The single crystalline nanoparticles can be Ta3N5:Mg+Zr, or Ta3N5:Mg, or Ta3N5:Zr or any combination thereof. Catalyst containing the single crystalline nanoparticles alone or with one or more co-catalyst are further described along with methods of making the nanoparticles and catalyst. Methods to split water utilizing the catalyst are further described.
Abstract:
Tantalum powder that is highly spherical is described. The tantalum powder can be useful in additive manufacturing and other uses. Methods to make the tantalum powder are further described as well as methods to utilize the tantalum powder in additive manufacturing processes. Resulting products and articles using the tantalum powder are further described.
Abstract:
A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 μm or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 μm or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
Abstract:
A method of making sputter targets using rotary axial forging is described. Other thermomechanical working steps can be used prior to and/or after the forging step. Sputter targets are further described which can have unique grain size and/or crystal structures.