Prediction-correction approach to zero shot learning

    公开(公告)号:US11087177B2

    公开(公告)日:2021-08-10

    申请号:US16176075

    申请日:2018-10-31

    Abstract: Approaches to zero-shot learning include partitioning training data into first and second sets according to classes assigned to the training data, training a prediction module based on the first set to predict a cluster center based on a class label, training a correction module based on the second set and each of the class labels in the first set to generate a correction to a cluster center predicted by the prediction module, presenting a new class label for a new class to the prediction module to predict a new cluster center, presenting the new class label, the predicted new cluster center, and each of the class labels in the first set to the correction module to generate a correction for the predicted new cluster center, augmenting a classifier based on the corrected cluster center for the new class, and classifying input data into the new class using the classifier.

Patent Agency Ranking