Abstract:
The invention discloses a method for real-time face animation based on single video camera. The method tracks 3D locations of face feature points in real time by adopting a single video camera, and parameterizes head poses and facial expressions according to the 3D locations, finally may map these parameters into an avatar to drive face animation of an animation character. The present invention may achieve a real time speed by merely adopting a usual video camera of the user instead of an advanced acquisition equipment; the present invention may process all kinds of wide-angle rotations, translation and exaggerated expressions of faces accurately; the present invention may also work under different illumination and background environments, which include indoor and sunny outdoor.
Abstract:
A multi-node data synchronous acquisition system and a method for real-time monitoring of underwater surface deformation. The system includes at least four sensor arrays, where each of the sensor array consists of a plurality of ribbon-like rigid substrates connected by movable joints. On each section of rigid substrate, three sensor units are respectively connected to a slave station data acquisition unit through cables. The slave station data acquisition unit is connected with a central controller through a cable. The central controller includes a compressive cabin outside and an embedded controller and a power supply inside. Each slave station data acquisition unit acquires data from an MEMS attitude sensor and then transmits it to the embedded controller. The present invention may realize synchronous acquisition of underwater or even underwater multi-node data, implement three-dimensional surface reconstruction, and may be used for improving the ocean observation capability.
Abstract:
A multi-node data synchronous acquisition system and a method for real-time monitoring of underwater surface deformation. The system includes at least four sensor arrays, where each of the sensor array consists of a plurality of ribbon-like rigid substrates connected by movable joints. On each section of rigid substrate, three sensor units are respectively connected to a slave station data acquisition unit through cables. The slave station data acquisition unit is connected with a central controller through a cable. The central controller includes a compressive cabin outside and an embedded controller and a power supply inside. Each slave station data acquisition unit acquires data from an MEMS attitude sensor and then transmits it to the embedded controller. The present invention may realize synchronous acquisition of underwater or even underwater multi-node data, implement three-dimensional surface reconstruction, and may be used for improving the ocean observation capability.