Abstract:
A method of ironmaking using full-oxygen hydrogen-rich gas which includes hot transferring and hot charging the high-temperature coke, sinter and pellet into the ironmaking furnace through transferring and charging device, and injecting oxygen and hydrogen-rich combustible gas at a predetermined temperature into the ironmaking furnace through the oxygen tuyere and the gas tuyere disposed at the ironmaking furnace, respectively. It also provides an apparatus for ironmaking using full-oxygen hydrogen-rich gas which includes a raw material system, a furnace roof gas system, a coke oven gas injecting system, a dust injecting system, a slag dry-granulation and residual heat recovering system and an oxygen system. Additionally an apparatus and method for hot transferring and hot charging of ironmaking raw material is disclosed.
Abstract:
A method of ironmaking using full-oxygen hydrogen-rich gas which includes hot transferring and hot charging the high-temperature coke, sinter and pellet into the ironmaking furnace through transferring and charging device, and injecting oxygen and hydrogen-rich combustible gas at a predetermined temperature into the ironmaking furnace through the oxygen tuyere and the gas tuyere disposed at the ironmaking furnace, respectively. It also provides an apparatus for ironmaking using full-oxygen hydrogen-rich gas which includes a raw material system, a furnace roof gas system, a coke oven gas injecting system, a dust injecting system, a slag dry-granulation and residual heat recovering system and an oxygen system. Additionally an apparatus and method for hot transferring and hot charging of ironmaking raw material is disclosed.