Abstract:
The invention relates to a testing system for testing motor-car performance under conditions simulating travel in a predetermined range of speeds or engine revolutions comprising in combination:Two parallel rollers arranged close and parallel with each other, one of these being provided with a flywheel of a mass simulating the weight of a motor-car; said rollers being adapted to support the wheel of a motor-car, a third idling roller being provided adjacent the said rollers or between these, means being provided for measuring the lateral force of deflection of this idling roller which is indicative of wheel alignment; said rollers being in contact with said wheel, means being provided for actuating the said flywheel to a predetermined rotational velocity;Means being provided for measuring the rotational speed of the two parallel rollers and of the idling roller and of changes of these; means being provided for automatically indicating or recording numerical data obtained by such measurements or for graphically recording such data or derivatives computed from these, said values being indicative of various values of motor-car performance. According to a preferred embodiment there are provided two parallel systems, each of these adapted for one of the wheels of a pair of wheels of a motor-car, so as to carry out simultaneously two measurements.
Abstract:
The invention pertains to a vehicle testing platform for testing the electronic stability program (ESP) of a vehicle and a method of its use. The invention also relates to a retainer structure for holding a vehicle upon any vehicle testing platform.
Abstract:
An apparatus for testing the brakes, wheel alignment, suspension, transmission, and engine of motorized wheeled vehicles, includes a dynamometer for self-calibration. A platform supports a road vehicle to be tested. Two or four pairs of short high-inertia rollers are revolvably supported adjacent to the platform, and positioned to individually support either the front wheels or the back wheels of the vehicle. The rollers are drivable by a stationary vehicle resting thereon, each pair of high-inertia rollers supporting one vehicle wheel. A floating roller contacts the wheel to detect side forces. Sensors are connected to the rollers and a computer for data processing, display and recording is connected to the sensors. Speed of the rollers is monitored by an encoder having a resolution of at least 1000 pulses/sec. A preferred embodiment of the apparatus includes electric motors which can be connected to drive the rollers.
Abstract:
An apparatus for testing the brakes, wheel alignment, suspension, transmission, and engine of motorized wheeled vehicles, includes means such as a dynamometer for self-calibration. A platform supports a road vehicle to be tested. Two or four pairs of short high-inertia rollers are revolvably supported adjacent to said platform, and positioned to individually support either the front wheels or the back wheels of the vehicle. The rollers are drivable by a stationary vehicle resting thereon, each pair of high-inertia rollers supporting one vehicle wheel. A floating roller contacts the wheel to detect side forces. Sensor means are connected to the rollers and data processing, display and recording means are connected to the sensors. Speed of the rollers is monitored by an encoder having a resolution of at least 1000 pulses/sec. A preferred embodiment of the apparatus includes electric motors which can be connected to drive the rollers.