摘要:
A nonlinear electrical circuit dynamic model for different fuel cells is provided. The model provides a nonlinear electrical circuit equivalent, the parameters of which correspond to the particular fuel cell being modeled. The parameters can be theoretically or experimentally derived from the responses of the particular fuel cell. The resulting model can have impedances that are equivalent to that of the particular fuel cell, thereby capturing or providing a good approximation of the transient behavior of the particular fuel cell. More particularly, the resulting model can have impedances in the low frequency range less than 100 Hz that are equivalent to that of the particular fuel cell.
摘要:
A nonlinear electrical circuit dynamic model for different fuel cells is provided. The model provides a nonlinear electrical circuit equivalent, the parameters of which correspond to the particular fuel cell being modeled. The parameters can be theoretically or experimentally derived from the responses of the particular fuel cell. The resulting model can have impedances that are equivalent to that of the particular fuel cell, thereby capturing or providing a good approximation of the transient behavior of the particular fuel cell. More particularly, the resulting model can have impedances in the low frequency range less than 100 Hz that are equivalent to that of the particular fuel cell.
摘要:
Electrochemical capacitors and methods for producing such electrochemical capacitors. The electrochemical capacitor can have an initial charged state and a cycled charged state and can include an anode, a cathode, and an electrolyte. The anode can include a first mixture having a first plurality of electrically conductive carbon-comprising particles having a first average porosity. The cathode can include a second mixture having a second plurality of electrically conductive carbon-comprising particles having a second average porosity greater than said first average porosity. The electrolyte can be physically and electrically contacting said anode and said cathode, and the first mixture in the cycled charged state can be substantially free of lithium metal particles and can further include a plurality of lithium ions intercalating the first plurality of carbon comprising particles. The mass ratio of the cathode and the electrolyte can be less than 1.
摘要:
A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The catalyst layer can have 1% or less binder prior to attachment to the membrane electrode assembly. The catalyst layer can include (a) single-wall nanotubes, small diameter multi-wall nanotubes, or both, and (b) large diameter multi-wall nanotubes, carbon nanofibers, or both. The ratio of (a) to (b) can range from 1:2 to 1:20. The catalyst layer can produce a surface area utilization efficiency of at least 60% and the platinum utilization efficiency can be 0.50 gPt/kW or less.
摘要:
A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The catalyst layer can have 1% or less binder prior to attachment to the membrane electrode assembly. The catalyst layer can include (a) single-wall nanotubes, small diameter multi-wall nanotubes, or both, and (b) large diameter multi-wall nanotubes, carbon nanofibers, or both. The ratio of (a) to (b) can range from 1:2 to 1:20. The catalyst layer can produce a surface area utilization efficiency of at least 60% and the platinum utilization efficiency can be 0.50 gPt/kW or less.
摘要:
A membrane electrode assembly (MEA) for a fuel cell comprising a gradient catalyst structure and a method of making the same. The gradient catalyst structure can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on layered buckypaper. The layered buckypaper can include at least a first layer and a second layer and the first layer can have a lower porosity compared to the second layer. The gradient catalyst structure can include single-wall nanotubes, carbon nanofibers, or both in the first layer of the layered buckypaper and can include carbon nanofibers in the second layer of the layered buckypaper. The MEA can have a catalyst utilization efficiency of at least 0.35 gcat/kW or less.