Abstract:
Methods, systems and programming for providing query suggestions based on user's previous search query. In one example, an input including a prefix of a first query is received from a user in a user session. At least a second query that was previously received from the user in the user session is then obtained. A third query is obtained based on the second query and the prefix of the first query. One or more query suggestions are provided to the user as a response to the input. The one or more query suggestions include the third query.
Abstract:
Methods, systems and programming for evaluating query suggestions quality. In one example, a plurality of query suggestions are provided in a ranking to a user. A user activity with respect to one of the plurality of query suggestions is detected. A position of the one of the plurality of query suggestions in the ranking is determined. A quality measure of the plurality of query suggestions is calculated based, at least in part, on the user activity and the position of the one of the plurality of query suggestions.
Abstract:
A system and method is described for large-scale, automated classification of products. The system and method receives information about products, wherein such information includes one or more text metadata fields associated with each product, receives a set of categories, and automatically selects one or more categories from the set of categories to which each product belongs based upon at least one of the one or more text metadata fields associated with each product. A machine learning classifier may be used to automatically select the one or more categories to which each product belongs by operating upon a feature vector for each product derived from text metadata fields of the product description. The machine learning classifier may be trained using a set of pre-categorized product descriptions. The product-category associations generated by the system and method can be used to improve search engine results or product recommendations to consumers.
Abstract:
Methods, systems and programming for providing query suggestions based on user's previous search query. In one example, an input including a prefix of a first query is received from a user in a user session. At least a second query that was previously received from the user in the user session is then obtained. A third query is obtained based on the second query and the prefix of the first query. One or more query suggestions are provided to the user as a response to the input. The one or more query suggestions include the third query.
Abstract:
Techniques are described herein for enhancing the ranking products using purchase day based time windows. A purchase day based time window is a time window that is defined to include purchase days selected from a series of consecutive days. A purchase day is a day on which a product associated with the time window is purchased. The series of consecutive days includes the purchase days intermixed with non-purchase day(s). A non-purchase day is a day on which the product associated with the time window is not purchased. The purchase day based time window is further defined to not include the non-purchase day(s).
Abstract:
One or more suggested search query completion alternatives are provided to the user and are selectable by the user in completing the user's search query. The suggested search query completion alternatives may comprise local business query completion suggestions, each of which may correspond to a local business, and general query completion suggestions, each of which may correspond to a general query. A ranking of local business query completion suggestions and general query completion suggestions may be used to identify a number of top-ranked query completion suggestions for presentation to the user. The ranking may use a popularity measure associated with each business and a frequency measure associated with each general query. A popularity associated with a local business may be weighted using a granularity weighting, which may be determined using a local query intent confidence level.
Abstract:
Methods, systems and programming for providing query suggestions based on user feedback. In one example, a prefix of a query is first received. An input including a prefix of a query is received from a user in a search session. A plurality of query suggestions are fetched based on the prefix of the query. Rankings of the plurality of query suggestions are determined based, at least in part, on the user's previous interactions in the search session with respect to at least one of the plurality of query suggestions. The at least one of the plurality of query suggestions has been previously provided to the user in the search session. The plurality of query suggestions are provided in the search session based on their rankings as a response to the input.
Abstract:
Methods, systems and programming for providing query suggestions including entities. In one example, a prefix of a query is first received. A plurality of query suggestions are then identified based on the prefix of the query. The plurality of query suggestions include at least one entity. Scores of each of the plurality of query suggestions are computed using a first model. The first model includes an adjustable parameter used for computing the score of the at least one entity. The plurality of question suggestions are ranked based, at least in part, on the scores.
Abstract:
Methods, systems and programming for providing query suggestions including entities. In one example, a prefix of a query is first received. A plurality of query suggestions are then identified based on the prefix of the query. The plurality of query suggestions include at least one entity. Scores of each of the plurality of query suggestions are computed using a first model. The first model includes an adjustable parameter used for computing the score of the at least one entity. The plurality of question suggestions are ranked based, at least in part, on the scores.
Abstract:
Methods, systems and programming for evaluating query suggestions quality. In one example, a plurality of query suggestions are provided in a ranking to a user. A user activity with respect to one of the plurality of query suggestions is detected. A position of the one of the plurality of query suggestions in the ranking is determined. A quality measure of the plurality of query suggestions is calculated based, at least in part, on the user activity and the position of the one of the plurality of query suggestions.