Abstract:
The present invention relates to an optical fiber and a planar waveguide for achieving a uniform optical attenuation, which comprises a core co-doped with a first metal ions having an optical absorption coefficient of a negative slope in a particular wavelength band and a second metal ions having an optical absorption coefficient of a positive slope in a predetermined wavelength band.
Abstract:
Disclosed is a method of fabricating an optical fiber or an optical device doped with reduced metal ion and/or rare earth ion, comprising steps of: forming a partially-sintered fine structure in a base material for fabricating the optical fiber or the optical device; soaking the fine structure into a doping solution containing a reducing agent together with metal ion and rare earth ion during a selected time; drying the fine structure in which the metal ion and/or rare ion are/is soaked; and heating the fine structure such that the fine structure is sintered.
Abstract:
An optical DPSK signal demodulator includes a signal separator that separates an optical signal into an input optical signal and an output optical signal in a signal optical path. First and second reflectors are provided at a predetermined interval and reflect the optical signals with a predetermined time delay to have substantially the same intensity. A phase shifter is provided between the first and second reflectors and configured to allow the optical signals reflected from the first and second reflectors to have a phase difference.
Abstract:
An optical DPSK signal demodulator includes a signal separator that separates an optical signal into an input optical signal and an output optical signal in a signal optical path. First and second reflectors are provided at a predetermined interval and reflect the optical signals with a predetermined time delay to have substantially the same intensity. A phase shifter is provided between the first and second reflectors and configured to allow the optical signals reflected from the first and second reflectors to have a phase difference.
Abstract:
Disclosed is a low bend loss optical fiber including: a core; an inner layer disposed at outside of the core, which has a refractive index lower than a refractive index of the core, the refractive index of the inner layer gradually decreasing as it becomes farther from the core; and a trench layer disposed at outside of the inner layer, which has a lowest refractive index.
Abstract:
A method of fabricating an optical fiber preform using a modified chemical vapor deposition method and a nonlinear optical fiber fabricated using the method. The method comprises the steps of: forming a cladding layer and a core layer in a quartz glass tube; partially sintering the core layer; partially shrinking both ends of the quartz glass tube, in which the cladding layer and the core layer partially sintered are formed; and doping a sintered portion of the core layer with an impurity component, so that the optical fiber preform fabricated has a predetermined function. The nonlinear optical fiber being fabricated by a process comprising the steps of: forming the cladding layer and the core layer in a quartz glass tube; partially sintering the core layer; partially collapsing both ends of the quartz glass tube; and doping a sintered portion of the core layer with a predetermined impurity component.
Abstract:
Disclosed is a method of fabricating an optical fiber or an optical device doped with reduced metal ion and/or rare earth ion, comprising steps of: forming a partially-sintered fine structure in a base material for fabricating the optical fiber or the optical device; soaking the fine structure into a doping solution containing a reducing agent together with metal ion and rare earth ion during a selected time; drying the fine structure in which the metal ion and/or rare ion are/is soaked; and heating the fine structure such that the fine structure is sintered.
Abstract:
Disclosed is a method of fabricating an optical fiber or an optical device doped with d metal ion and/or rare earth ion, comprising steps of: forming a partially-sintered fine re in a base material for fabricating the optical fiber or the optical device; soaking the fine re into a doping solution containing a reducing agent together with metal ion and rare on during a selected time; drying the fine structure in which the metal ion and/or rare ion soaked; and heating the fine structure such that the fine structure is sintered.