Abstract:
An antenna structure includes a feeding radiation element, a first radiation element, a second radiation element, a third radiation element, a fourth radiation element, a fifth radiation element, and a switch circuit. The feeding radiation element has a feeding point. The second radiation element is coupled through the first radiation element to the feeding radiation element. The third radiation element is coupled to the second radiation element. The fourth radiation element is coupled to the second radiation element. The fourth radiation element and the third radiation element extend in different directions. The fifth radiation element has a tuning point, and is coupled to the feeding radiation element. The feeding radiation element is disposed between the first radiation element and the fifth radiation element. The switch circuit selectively couples the tuning point to a ground voltage.
Abstract:
An embodiment of the invention introduces a method for accessing big data, which contains at least the following steps. A data access request is received from one of a plurality of database frontends of different kinds. A data access operation is performed for the data access request by using an API (Application Programming Interface) to manipulate one of a plurality of cloud file systems of different kinds.
Abstract:
A method for managing a transmission order in a network includes the steps of: providing an upstream host and a plurality of downstream hosts; performing a order of a plurality of data transmission events between the upstream host and the plurality of the downstream hosts; performing a first data transmission event by the upstream host to receive first data from a first downstream host; monitoring whether the upstream host receives any priority instructions from any other downstream hosts; and if a first priority instruction is received from a second downstream host during the first data transmission event, stopping the first data transmission event and performing a second data transmission event by the upstream host to receive second data from the second downstream host.
Abstract:
A method for managing a transmission order in a network includes the steps of: providing an upstream host and a plurality of downstream hosts; performing a order of a plurality of data transmission events between the upstream host and the plurality of the downstream hosts; performing a first data transmission event by the upstream host to receive first data from a first downstream host; monitoring whether the upstream host receives any priority instructions from any other downstream hosts; and if a first priority instruction is received from a second downstream host during the first data transmission event, stopping the first data transmission event and performing a second data transmission event by the upstream host to receive second data from the second downstream host.
Abstract:
An antenna system includes a first antenna, a second antenna, a third antenna, an isolation metal element, and a nonconductive support element. The isolation metal element is disposed between the first antenna and the second antenna. The third antenna defines a notch region. The second antenna at least partially extends into the notch region. The distance between the third antenna and the second antenna is from 1 mm to 10 mm. The first antenna, the second antenna, the third antenna, and the isolation metal element are all disposed on the nonconductive support element.
Abstract:
A surveillance method using multi-dimensional sensor data for use in a surveillance system is provided. The surveillance system includes a plurality of sensors installed within a scene, and the plurality of sensor are classified into a plurality of types. The surveillance method includes the steps of: obtaining each type of sensor data from the scene using the sensors; performing a local-object process on each type of sensor data to generate local-object-feature information for each type; performing a global-object process according to the local-object-feature information of each type to generate global-object-feature information; and performing a global-object recognition process on the global-object-feature information to generate a global-recognition result.
Abstract:
The invention introduces a method for indoor positioning, executed by a processing unit of a first reference node, which contains at least the following steps. Broadcast signals of second reference nodes are listened. Signal measurements of the broadcast signals are obtained. Identification information is obtained from broadcast messages sent by the second reference nodes. A distance associated with each identification information is obtained. A MLM (Machine Learning Model) is updated according to the signal measurements and the distances, where the MLM describes a linear function between signal measurements and distances.
Abstract:
Disclosed herein is a block storage gateway module comprising a receiver unit and an access unit. The receiver unit intercepts an operating system call indicating a local access to a storage volume in order to generate a proximal access command. The access unit proximally accesses a storage array based on the said command. The storage array corresponds to the storage volume; the proximal access corresponds to the local access. Also disclosed herein is a mediator system for storage, the system comprising a load balancer device and one or more storage resource devices. Each storage resource device comprises an aforementioned module and a daemon module. The load balancer device receives a remote access request, selects one storage resource device, and sends an address of the selected storage resource device in a grant message.
Abstract:
An antenna structure includes a feeding radiation element, a first radiation element, a second radiation element, a nonconductive support element, and an accessory element. The feeding radiation element has a feeding point. The first radiation element includes a branch portion and a widening portion. The feeding radiation element is coupled through the first radiation element to a ground voltage. The second radiation element is coupled to the feeding radiation element and the first radiation element. The nonconductive support element carries the feeding radiation element, the first radiation element, and the second radiation element. The accessory element includes a nonconductive housing and an internal metal element. The branch portion and widening portion of the first radiation element are disposed on the nonconductive housing of the accessory element.
Abstract:
The invention introduces a method for session failover in OS (Operating System) level, which contains at least the following steps. A VM (Virtual Machine) OS is selected to perform a failover when a server OS is determined to have failed. A memory and a local storage device of the VM OS are mapped to the physical memory space and physical storage space of a distributed share-memory-and-cloud-storage, which were allocated for the failed server OS via a hypervisor corresponding to the VM OS. The OS state of the failed server OS is obtained from a distributed cache system via the hypervisor.
Abstract translation:本发明介绍了一种在OS(操作系统)级别进行会话故障转移的方法,其中至少包含以下步骤。 选择VM(虚拟机)操作系统,以在服务器操作系统被确定失败时执行故障切换。 VM OS的存储器和本地存储设备被映射到分布式共享存储器和云存储的物理存储器空间和物理存储空间,分配的共享存储器和云存储通过与VM相对应的管理程序为故障服务器OS分配 操作系统。 故障服务器OS的操作系统状态是通过管理程序从分布式缓存系统获得的。