-
1.
公开(公告)号:US20190290685A1
公开(公告)日:2019-09-26
申请号:US16345264
申请日:2017-10-27
Applicant: Wake Forest University
Inventor: Ulrich Bierbach , Ye Zheng , Ravi Singh
IPC: A61K33/243 , A61K9/51 , A61P35/00
Abstract: Large-pore mesoporous silica nanoparticles (MSN) were prepared and functionalized to serve as a robust and biocompatible delivery platform for platinum-acridine (PA) anticancer agents. The material showed a high loading capacity for the dicationic, hydrophilic hybrid agent [PtCl(en)(N-[acridin-9-ylaminoethyl]-N-methylropionamidine)] dinitrate salt (P1 Al) and virtually complete retention of payload at neutral pH in a high-chloride buffer. In acidic media mimicking the pH inside the cells' lysosomes, rapid, burst-like release of P1 A1 from the nanoparticles is observed. Coating of the materials in phospholipid bilayers resulted in nanoparticles with greatly improved colloidal stability. The lipid and carboxylate- modified nanoparticles containing 40 wt. % drug caused S phase arrest and inhibited cell proliferation in pancreatic cancer cells at submicromolar concentrations similar to carrier-free P1A1. One feature of the nanoparticle-delivered P1A1 was that the payload did not escape from the acidified lysosomal vesicles into the cytoplasm, but was shuttled to the nuclear membrane and released into the nucleus.