Abstract:
A speech recognition system receives and analyzes speech input from a user in order to recognize and accept a response from the user. Under certain conditions, information about the response expected from the user may be available. In these situations, the available information about the expected response is used to modify the behavior of the speech recognition system by taking this information into account. The modified behavior of the speech recognition system comprises adjusting the rejection threshold when speech input matches the predetermined expected response.
Abstract:
A system and method for supplying power to a headset, and for transmitting multiple signals generated in the headset to a terminal using frequency division multiplexing. An audio signal and a carrier signal are generated in the terminal and summed together to form a composite uplink signal. The composite uplink signal is provided to a headset over a first physical channel. At the headset, the audio and carrier signals are separated, and the carrier signal is used to generate power in the headset. Signals generated by a plurality of acoustic sensors in the headset are combined using frequency division multiplexing to generate a composite downlink signal, which is transmitted to the terminal over a second physical channel. One or more carrier signals used to generate the composite downlink signal are provided by either a carrier source in the headset, or by recovering the carrier signal from the composite uplink signal.
Abstract:
A communication component modifies production of an audio waveform at determined modification segments to thereby mitigate the effects of a delay in processing and/or receiving a subsequent audio waveform. The audio waveform and/or data associated with the audio waveform are analyzed to identify the modification segments based on characteristics of the audio waveform and/or data associated therewith. The modification segments show where the production of the audio waveform may be modified without substantially affecting the clarity of the sound or audio. In one embodiment, the invention modifies the sound production at the identified modification segments to extend production time and thereby mitigate the effects of delay in receiving and/or processing a subsequent audio waveform for production.
Abstract:
A system and method for supplying power to a headset, and for transmitting multiple signals generated in the headset to a terminal using frequency division multiplexing. An audio signal and a carrier signal are generated in the terminal and summed together to form a composite uplink signal. The composite uplink signal is provided to a headset over a first physical channel. At the headset, the audio and carrier signals are separated, and the carrier signal is used to generate power in the headset. Signals generated by a plurality of acoustic sensors in the headset are combined using frequency division multiplexing to generate a composite downlink signal, which is transmitted to the terminal over a second physical channel. One or more carrier signals used to generate the composite downlink signal are provided by either a carrier source in the headset, or by recovering the carrier signal from the composite uplink signal.
Abstract:
A communication component modifies production of an audio waveform at determined modification segments to thereby mitigate the effects of a delay in processing and/or receiving a subsequent audio waveform. The audio waveform and/or data associated with the audio waveform are analyzed to identify the modification segments based on characteristics of the audio waveform and/or data associated therewith. The modification segments show where the production of the audio waveform may be modified without substantially affecting the clarity of the sound or audio. In one embodiment, the invention modifies the sound production at the identified modification segments to extend production time and thereby mitigate the effects of delay in receiving and/or processing a subsequent audio waveform for production.
Abstract:
A speech recognition system receives and analyzes speech input from a user in order to recognize and accept a response from the user. Under certain conditions, information about the response expected from the user may be available. In these situations, the available information about the expected response is used to modify the behavior of the speech recognition system by taking this information into account. The modified behavior of the speech recognition system comprises adjusting the rejection threshold when speech input matches the predetermined expected response.
Abstract:
A power delivery method and system for powering a headset. A power signal is combined with an audio signal to form a composite signal that is communicated over a shared channel to the headset. The power signal is generated by modulating a carrier signal with a modulation signal. The modulation signal is derived from the amplitude of the audio signal so that the peak levels of the composite signal do not exceed the maximum allowable output of an audio I/O circuit driving the headset.
Abstract:
A power delivery method and system for powering a headset. A power signal is combined with an audio signal to form a composite signal that is communicated over a shared channel to the headset. The power signal is generated by modulating a carrier signal with a modulation signal. The modulation signal is derived from the amplitude of the audio signal so that the peak levels of the composite signal do not exceed the maximum allowable output of an audio I/O circuit driving the headset.