Abstract:
Systems and methods described herein provide optimized resource management to meet Ultra-Reliable Low-Latency Communications (URLLC) service requirements in Radio Access Networks (RANs), such as Fifth Generation New Radio (5G-NR) RANs. A network device stores resource management policy options for implementing communication sessions for a URLLC service level and determines that the URLLC service level is required for a communication session requested by a user equipment (UE) device. The network device selects one of the resource management policy options for the communication session based on a number of antennas used by an access station supporting the communication session and one of: an estimated available bandwidth for the access station or a transmission delay for processing a packet in the communication session. The network device sends, to the access station, the selected one of the different resource management policy options.
Abstract:
A device determines a throughput for each network slice of multiple network slices in a mobile network over a number of time windows, and predicts a future throughput for each network slice of the multiple network slices based on the determined throughput. The device determines an available bandwidth of a Radio Access Network (RAN) of the mobile network. The device allocates a respective portion of the available bandwidth of the RAN to each network slice of the multiple network slices based on the predicted future throughput for each network slice.
Abstract:
A system may be configured to identify that a user device is connected to a first radio access network (“RAN”), via a first technology; and to identify that the user device is capable of accessing a second RAN, via a second technology. The system may further be configured to instruct the user device to concurrently connect to the second RAN and the first RAN, send or receive a first type of traffic via the first RAN, and send or receive a second type of traffic via the second RAN.
Abstract:
A system in wireless core network obtains a group policy to support background data transfer for a group of user equipment (UEs) associated with a common network area identifier. The system maps the network area identifier to one or more of a mobility management entity (MME) device and a packet data network gateway (PGW) device. The system generates a configuration command to enforce the group policy by the one or more of the MME device or the PGW device and configures, based on the configuration command, the one or more of the MME device or the PGW device to enforce the group policy.
Abstract:
A method, a device, and a non-transitory storage medium are described in which an end-to-end network slice management service is provided. The service may map application services to network slices based on network profiles, and may generate mapping information. The mapping information may indicate network slice portion-to-application service mappings, and end-to-end mappings between a network slice and the application service. The service may calculate metric values pertaining to networks and associated network slices, and calculate prospective metric values for the networks and network slices based on the metric values. The service may estimate resources allocation values associated with resources to support the prospective metric values based on the prospective metric values and the mapping information. The service may calculate a schedule and assignment of the resources, and provide them to the networks.
Abstract:
A system in wireless core network obtains a group policy to support background data transfer for a group of user equipment (UEs) associated with a common network area identifier. The system maps the network area identifier to one or more of a mobility management entity (MME) device and a packet data network gateway (PGW) device. The system generates a configuration command to enforce the group policy by the one or more of the MME device or the PGW device and configures, based on the configuration command, the one or more of the MME device or the PGW device to enforce the group policy.
Abstract:
A system may be configured to receive information regarding a geographical location of a user device; and compare the geographical location of the user device to geographical locations of a set of gateway devices. The gateway devices may be associated with a cellular network, and the gateway devices may communicatively couple one or more network devices associated with the cellular network to an access point that is not associated with the cellular network. The system may further select a particular gateway device based on the geographical location of the user device and the geographical locations of the particular gateway device; and store or output information regarding the selected particular gateway device.
Abstract:
A device may receive machine-to-machine (M2M) traffic associated with two or more M2M applications. The M2M traffic may include information that identifies two or more priority levels associated with the M2M traffic. The device may determine parameters associated with managing the M2M traffic. The device may determine a traffic rate, an overall holding time, and an outgoing traffic rate associated with the M2M traffic. The device may determine a normalization factor based on the overall holding time and the parameters. The device may determine a set of priority level holding times based on the normalization factor, the overall holding time, and the parameters. Each priority level holding time may be associated with a priority level of the two or more priority levels. The device may manage the M2M traffic based on the set of priority level holding times and the outgoing traffic rate.
Abstract:
A Multi-Access Edge Computing (MEC) device, associated with a base station, may include a processor configured to receive a request to send data to a plurality of user equipment (UE) devices. The MEC device may be further configured to determine that the data is to be delivered to the plurality of UE devices by the base station via multicast; determine signal quality values for the plurality of UE devices; select a subset of the plurality of UE devices based on the determined signal quality values; and send, using the base station, the data to the selected subset of the plurality of UE devices via multicast, and delaying or terminating delivery of the requested data to UE devices, of the plurality of UE devices, that are not in the selected subset.
Abstract:
A method may include identifying paths from a user equipment (UE) device to an anchor station, determining that a first path corresponds to a direct wireless link to the anchor station and determining, in response to determining that the first path corresponds to a direct wireless link, a signal quality and a congestion associated with the direct wireless link. The method may also include selecting, in response to determining that the signal quality satisfies a signal quality threshold and the congestion satisfies a congestion threshold, the first path for the UE device to use when communicating with the anchor station. The method may further include identifying, in response to determining that the signal quality does not satisfy the signal quality threshold or the congestion does not satisfy the throughput threshold, another path for the UE device to use when communicating with the anchor station.