Cadence detection based on inertial harmonics

    公开(公告)号:US11363987B2

    公开(公告)日:2022-06-21

    申请号:US15958113

    申请日:2018-04-20

    Abstract: The method and apparatus disclosed herein determine a user cadence from the output of an inertial sensor mounted to or proximate the user's body. In general, the disclosed cadence measurement system determines the user cadence based on frequency measurements acquired from an inertial signal output by the inertial sensor. More particularly, a cadence measurement system determines a user cadence from an inertial signal generated by an inertial sensor, where the inertial signal comprises one or more frequency components. The cadence measurement system determines a peak frequency of the inertial signal, where the peak frequency corresponds to the frequency component of the inertial signal having the largest amplitude. After applying the peak frequency to one or more frequency threshold comparisons, the cadence measurement system determines the user cadence based on the peak frequency and the frequency threshold comparison(s).

    SYSTEMS AND METHODS FOR VARIABLE FILTER ADJUSTMENT BY HEART RATE METRIC FEEDBACK

    公开(公告)号:US20200077899A1

    公开(公告)日:2020-03-12

    申请号:US16683884

    申请日:2019-11-14

    Abstract: A physiological signal processing system for a physiological waveform that includes a cardiovascular signal component provides a variable high pass filter that is responsive to the physiological waveform, and that is configured to high pass filter the physiological waveform in response to a corner frequency that is applied. A heart rate metric extractor is responsive to the variable high pass filter and is configured to extract a heart rate metric from the physiological waveform that is high pass filtered. A corner frequency adjuster is responsive to the heart rate metric extractor and is configured to determine the corner frequency that is applied to the variable high pass filter, based on the heart rate metric that was extracted. Analogous methods may also be provided.

    Systems and methods for variable filter adjustment by heart rate metric feedback

    公开(公告)号:US10512403B2

    公开(公告)日:2019-12-24

    申请号:US15784960

    申请日:2017-10-16

    Abstract: A physiological signal processing system for a physiological waveform that includes a cardiovascular signal component provides a variable high pass filter that is responsive to the physiological waveform, and that is configured to high pass filter the physiological waveform in response to a corner frequency that is applied. A heart rate metric extractor is responsive to the variable high pass filter and is configured to extract a heart rate metric from the physiological waveform that is high pass filtered. A corner frequency adjuster is responsive to the heart rate metric extractor and is configured to determine the corner frequency that is applied to the variable high pass filter, based on the heart rate metric that was extracted. Analogous methods may also be provided.

    Cadence detection based on inertial harmonics

    公开(公告)号:US09993204B2

    公开(公告)日:2018-06-12

    申请号:US14655992

    申请日:2014-01-06

    Abstract: The method and apparatus disclosed herein determine a user cadence from the output of an inertial sensor mounted to or proximate the user's body. In general, the disclosed cadence measurement system determines the user cadence based on frequency measurements acquired from an inertial signal output by the inertial sensor. More particularly, a cadence measurement system determines a user cadence from an inertial signal generated by an inertial sensor, where the inertial signal comprises one or more frequency components. The cadence measurement system determines a peak frequency of the inertial signal, where the peak frequency corresponds to the frequency component of the inertial signal having the largest amplitude. After applying the peak frequency to one or more frequency threshold comparisons, the cadence measurement system determines the user cadence based on the peak frequency and the frequency threshold comparison(s).

Patent Agency Ranking