Abstract:
A nonhuman animal cancer model is described. The animal model includes an animal of the genus Peromyscus and xenograft cancer cells implanted in the animal. Methods for utilizing the animal model can include evaluation of growth and development of cancer cells as well as evaluation of known and potential cancer treatment therapies. The animal model can be utilized to examine the efficacy of an anticancer therapy at the preclinical stage, can be utilized to screen potential cancer treatments in an individualized cancer treatment protocol, and can be utilized for identification of biomarkers associated with particular cancers and/or particular anticancer therapies, among other beneficial uses.
Abstract:
Modulation of glucose homeostasis by administration of ciclopirox (6-cyclohexyl-1-hydroxy-4-methylpyridin-2(1H)-one) is described. Methods can be utilized in treatment of conditions that involve loss of glucose homeostasis, such as diabetes, and in one particular embodiment type II diabetes. Ciclopirox is shown to stimulate p21 expression by mechanisms that are likely p53-independent.
Abstract:
Systems, methods and diagnostic tools based a paradigm on how the diversity in expression profiles of primary specimens could be leveraged for target discovery via evaluating transcriptomes that lose coordination between the disease carrying and control groups and assessing the biological functions that are acquired in the former group.
Abstract:
A nonhuman animal cancer model is described. The animal model includes an animal of the genus Peromyscus and xenograft cancer cells implanted in the animal. Methods for utilizing the animal model can include evaluation of growth and development of cancer cells, as well as evaluation of known and potential cancer treatment therapies. The animal model can be utilized to examine the efficacy of an anticancer therapy at the preclinical stage, can be utilized to screen potential cancer treatments in an individualized cancer treatment protocol, and can be utilized for identification of biomarkers associated with particular cancers and/or particular anticancer therapies, among other beneficial uses.
Abstract:
A nonhuman animal cancer model is described. The animal model includes an animal of the genus Peromyscus and xenograft cancer cells implanted in the animal. Methods for utilizing the animal model can include evaluation of growth and development of cancer cells, as well as evaluation of known and potential cancer treatment therapies. The animal model can be utilized to examine the efficacy of an anticancer therapy at the preclinical stage, can be utilized to screen potential cancer treatments in an individualized cancer treatment protocol, and can be utilized for identification of biomarkers associated with particular cancers and/or particular anticancer therapies, among other beneficial uses.
Abstract:
Anti-CCL8 antibodies and antigen binding fragments thereof are described. Antibodies and fragments thereof can be used for prevention of migration of breast cancer cells. Methods include delivery of an anti-CCL8 antibody or an antigen binding fragment thereof to an area including the breast cancer cells, e.g., delivery to a subject in need thereof in an effective amount.
Abstract:
Anti-CCL8 antibodies and antigen binding fragments thereof are described. Antibodies and fragments thereof can be used for prevention of migration of breast cancer cells. Methods include delivery of an anti-CCL8 antibody or an antigen binding fragment thereof to an area including the breast cancer cells, e.g., delivery to a subject in need thereof in an effective amount.
Abstract:
A nonhuman animal cancer model is described. The animal model includes an animal of the genus Peromyscus and xenograft cancer cells implanted in the animal. Methods for utilizing the animal model can include evaluation of growth and development of cancer cells as well as evaluation of known and potential cancer treatment therapies. The animal model can be utilized to examine the efficacy of an anticancer therapy at the preclinical stage, can be utilized to screen potential cancer treatments in an individualized cancer treatment protocol, and can be utilized for identification of biomarkers associated with particular cancers and/or particular anticancer therapies, among other beneficial uses.
Abstract:
Modulation of glucose homeostasis by administration of ciclopirox (6-cyclohexyl-1-hydroxy-4-methylpyridin-2(1H)-one) is described. Methods can be utilized in treatment of conditions that involve loss of glucose homeostasis, such as diabetes, and in one particular embodiment type II diabetes. Ciclopirox is shown to stimulate p21 expression by mechanisms that are likely p53-independent.
Abstract:
Methods and materials for prevention of migration of breast cancer cells are described. Methods include inhibition of CCL8 activity in the area of the breast cancer cells. One method includes delivery of an anti-CCL8 antibody or an anti-CCL8 antibody expressing vector to an area including the breast cancer cells, e.g., delivery to a subject in need thereof in an effective amount. Another method includes inhibition of expression of CCL8 in a subject, for instance via silencing of the CCL8 gene.