Abstract:
A damper seal for a turbine blade of a gas turbine engine, the damper seal having: an upper portion; a first downwardly curved portion; and a second downwardly curved portion, the first downwardly curved portion and the second downwardly curved portion extend from opposing end regions of the upper portion, the upper portion having a length extending between the opposing end regions of the upper portion and a width transverse to the length, wherein the upper portion is curved along the entire width as it extends along the length.
Abstract:
A blade having: a root; a platform located between the root and the blade, wherein the platform defines a cavity; a damper restraint retaining a lateral edge of a damper seal received in the cavity, wherein the lateral edge of the damper seal extends between a first end portion and an opposing second end portion of the damper seal, the first end portion and the second end portion extend towards the root when the damper seal is located in the cavity and wherein the damper restraint extends along and adjacent to a portion of the lateral edge of the damper seal.
Abstract:
Airfoils having a body with leading and trailing edges and a first serpentine cavity within the body enabling a cooling flow in a first direction within the airfoil body, a second serpentine cavity fluidly connected to the first serpentine cavity enabling a cooling flow in a second direction, and a third serpentine cavity fluidly connected to the second serpentine cavity enabling a cooling flow in at least one of the first direction or a third direction. A resupply cavity is fluidly connected to the third serpentine cavity to supply a resupply air to the third serpentine cavity, a junction at the location of the second serpentine cavity, the resupply cavity and the third serpentine cavity, and a flow control feature arranged to turn the serpentine cooling air from the second direction and/or prevent resupply air backflow.
Abstract:
The present disclosure provides a fir tree coupling for gas turbine engine parts comprising a load beam having a longitudinal axis, a base, a first side, and a second side, a rail extending from the base of the load beam between the first side and the second side, a tooth running parallel to the longitudinal axis disposed on the first side of the load beam. The rail may comprise at least one of, a convex sidewall having a convex curvature, a concave sidewall having a concave curvature, or a vertical sidewall extending perpendicular to the base. The rail may comprise a sidewall comprising a sidewall step wherein the sidewall has a step cut into a portion of the rail. The rail may comprise a tapered sidewall wherein the tapered sidewall extends at an angle to the base.
Abstract:
A gas turbine engine, having: a disk; a plurality of blades secured to the disk, each of the plurality of blades having a platform located between a root portion and an airfoil portion of the blade, wherein the platform of one of the plurality of blades is configured to define a cavity with a platform of an adjacent blade that is secured to the disk; a damper seal located in the cavity and positioned adjacent to a gap defined by edges of the platforms of the blades; and a damper restraint located on an interior surface of each platform, wherein the damper restraint extends into the cavity and is a raised feature configured to contact a peripheral edge portion of a damper seal when it is adjacent to the gap defined by the platforms of the blades.
Abstract:
A blade for a gas turbine engine is disclosed herein. The blade having: a root; a platform located between the root and the blade, wherein the platform defines a cavity; a damper restraint located at a peripheral edge of the platform, wherein the damper restraint is a raised feature extending along at least a portion of the peripheral edge of the platform.
Abstract:
A blade for a gas turbine engine. The blade having: a root; a platform located between the root and the blade, wherein the platform defines a cavity; a damper seal received in the cavity, the damper seal having a main body portion that extends along a major axis of the damper seal between a first end portion and an opposing second end portion of the damper seal, the first end portion and the second end portion each extend towards the root when the damper seal is located in the cavity and wherein the damper seal has a variable thickness along at least a portion of a minor axis of the damper seal that extends between opposite peripheral edges of the main body portion.
Abstract:
A blade for a gas turbine engine is disclosed herein. The blade having: a root; a platform located between the root and the blade, wherein the platform defines a cavity; a damper restraint located at a peripheral edge of the platform, wherein the damper restraint is a raised feature extending along at least a portion of the peripheral edge of the platform.
Abstract:
A gas turbine engine component includes spaced apart walls that provide a cooling passage that extends in a first direction. A pedestal is arranged in the cooling passage and interconnects the walls in a thickness direction that is transverse to the first direction. The pedestal is asymmetrical in the thickness direction.
Abstract:
A damper seal for a turbine blade of a gas turbine engine, the damper seal having: an upper portion; a first downwardly curved portion; and a second downwardly curved portion, the first downwardly curved portion and the second downwardly curved portion extend from opposing end regions of the upper portion, the upper portion having a length extending between the opposing end regions of the upper portion and a width transverse to the length, wherein the upper portion is curved along the entire width as it extends along the length.