Abstract:
A viscoelasticity improving agent for rubber obtained by reacting an alkyllithium compound with a free radical compound having an isocyanate group in the molecule thereof and existing stably at room temperature in the presence of oxygen and a rubber composition.
Abstract:
A process for production of a modified carbon black, at a cheaper cost, for rubber reinforcement having the superior tan null temperature dependency of silica and an excellent abrasion resistance and further having no problems arising due to a low electrical conductivity is provided. In the process for production of a modified carbon black for rubber reinforcement wherein, in the step of granulating the carbon black, a water-dispersed silica is added to the carbon black, the granulating is performed by a granulator and a process of production of a rubber composition containing a surface-treated carbon black for rubber reinforcement comprising coagulating, with a coagulating agent, a mixture of (a) 100 parts by weight, as a solid content, of a diene rubber component and (b) 10 to 250 parts by weight, as a solid content, of a slurry containing a carbon black for rubber reinforcement or (bnull) 10 to 250 parts by weight of a modified carbon black produced by the above method.
Abstract:
A rubber composition comprising (i) an incompatible polymer blend of at least two diene rubbers selected from rubbers containing a conjugated diene and, optionally, an aromatic vinyl monomer and forming two polymer phases (A) and (B), and (ii) 0.1 to 20 parts by weight, based upon 100 parts by weight of the total polymer component including the block copolymer, of a block copolymer having at least two mutually incompatible blocks (a) and (b), wherein the block (a) is compatible with the polymer phase (A) and incompatible with the polymer phase (B) and the block (b) is compatible with the polymer phase (B) and incompatible with the polymer phase (A), and composed of a conjugated diene and, optionally, an aromatic vinyl monomer, and wherein the molecular weights of the polymers forming the polymer phases (A) and (B) satisfy the specified equations (I) and (II) mentioned in the specification.
Abstract:
A thermoplastic polymer having a carbonyl-containing group and a nitrogen-containing 5-membered heterocycle-containing group in side chains, and a composition thereof. The thermoplastic polymer and composition thereof have excellent recycle property in that physical properties do not deteriorate even though formation of crosslinking and dissociation of crosslinking are repeatedly conducted with altering temperature. The thermoplastic polymer and composition thereof are that its crosslinked structure is considerably stable at room temperature, and therefore have considerably high tensile strength. In particular, in the case of bonding to a main chain at 3-position or 4-position of a nitrogen-containing 5-membered heterocycle, intermolecular hydrogen bond is caused, so that a cured product has high mechanical properties.