摘要:
An embodiment in accordance with the present invention includes a method for estimating the permeability of fractured rock formations from the analysis of a slow fluid pressure wave, which is generated by pressurization of a borehole. Wave propagation in the rock is recorded with TFI™. Poroelastic theory is used to estimate the permeability from the measured wave speed. The present invention offers the opportunity of measuring the reservoir-scale permeability of fractured rock, because the method relies on imaging a wave, which propagates through a large rock volume, on the order of kilometers in size. Traditional methods yield permeability for much smaller rock volumes: well logging tools only measure permeability in the vicinity of a borehole. Pressure transient testing accesses larger rock volumes; however, these volumes are much smaller than for the proposed method, particularly in low-permeability rock formations.
摘要:
An embodiment in accordance with the present invention includes a method for estimating the permeability of fractured rock formations from the analysis of a slow fluid pressure wave, which is generated by pressurization of a borehole. Wave propagation in the rock is recorded with TFI™. Poroelastic theory is used to estimate the permeability from the measured wave speed. The present invention offers the opportunity of measuring the reservoir-scale permeability of fractured rock, because the method relies on imaging a wave, which propagates through a large rock volume, on the order of kilometers in size. Traditional methods yield permeability for much smaller rock volumes: well logging tools only measure permeability in the vicinity of a borehole. Pressure transient testing accesses larger rock volumes; however, these volumes are much smaller than for the proposed method, particularly in low-permeability rock formations.
摘要:
An embodiment in accordance with the present invention includes an EGS configured to allow the commercial production of electrical energy. One criteria of an EGS according to the present invention is that the temperature and volume of the fluids extracted are sufficiently high and large enough as to allow the commercial production of electrical energy. The system is able to operate for at least N years before the extracted fluid falls below the minimum temperature needed for energy production. Additionally, fractures are separated from each other by a sufficiently large volume of rock (Vcrit) relative to the fractures surface area such that the ratio of the rate of heat extraction to the rate of heat supply controlled by the thermal conductivity of the rock is such that the intervening rock is cooled at a rate that is sufficiently slow to be economic.
摘要:
A radiator (RAD) enhanced geothermal system (EGS) may comprise a radiator vane heat exchanger (RVHE). The RVHE may be configured to be located in a plane defined by an injector well and a production well that is defined by a principal stress direction (S1) of a plurality of principal stress directions and a maximum horizontal stress component (SHmax). The RVHE may include one or more stacked laterals oriented along SHmax. Each stacked lateral, of the one or more stacked laterals, may include one or more vertical branches oriented along S1. The RVHE may be configured to extract energy from a non-hydrothermal source of energy.
摘要:
An embodiment in accordance with the present invention includes an EGS configured to allow the commercial production of electrical energy. One criteria of an EGS according to the present invention is that the temperature and volume of the fluids extracted are sufficiently high and large enough as to allow the commercial production of electrical energy. The system is able to operate for at least N years before the extracted fluid falls below the minimum temperature needed for energy production. Additionally, fractures are separated from each other by a sufficiently large volume of rock (Vcrit) relative to the fractures surface area such that the ratio of the rate of heat extraction to the rate of heat supply controlled by the thermal conductivity of the rock is such that the intervening rock is cooled at a rate that is sufficiently slow to be economic.
摘要:
An embodiment in accordance with the present invention includes a method for estimating the permeability of fractured rock formations from the analysis of a slow fluid pressure wave, which is generated by pressurization of a borehole. Wave propagation in the rock is recorded with TFI™. Poroelastic theory is used to estimate the permeability from the measured wave speed. The present invention offers the opportunity of measuring the reservoir-scale permeability of fractured rock, because the method relies on imaging a wave, which propagates through a large rock volume, on the order of kilometers in size. Traditional methods yield permeability for much smaller rock volumes: well logging tools only measure permeability in the vicinity of a borehole. Pressure transient testing accesses larger rock volumes; however, these volumes are much smaller than for the proposed method, particularly in low-permeability rock formations.
摘要:
An embodiment in accordance with the present invention includes a method for estimating the permeability of fractured rock formations from the analysis of a slow fluid pressure wave, which is generated by pressurization of a borehole. Wave propagation in the rock is recorded with TFI™. Poroelastic theory is used to estimate the permeability from the measured wave speed. The present invention offers the opportunity of measuring the reservoir-scale permeability of fractured rock, because the method relies on imaging a wave, which propagates through a large rock volume, on the order of kilometers in size. Traditional methods yield permeability for much smaller rock volumes: well logging tools only measure permeability in the vicinity of a borehole. Pressure transient testing accesses larger rock volumes; however, these volumes are much smaller than for the proposed method, particularly in low-permeability rock formations.