Abstract:
The invention relates to an electric peaking combined heat and power (CHP) waste heat recovery device and an operating method thereof. The device comprises an inner power plant portion and a heat exchange station portion, wherein the inner power plant portion comprises a heat exchanger, a waste heat recovery electric heat pump, an energy-storing electric heat pump, high/low temperature water storing tanks, a heating network heater, a valve and a circulating water pump; the heat exchange station portion mainly comprises high/low temperature water storing tanks, an electric heat pump, a heat exchanger, a valve and a circulating water pump; as for the operating method of the device, the device can operate in periods of an electrical load trough, an electrical load flat and an electrical load peak respectively through combination of different valve switches, the high temperature water storing tank is used for balancing the difference between system heat supply amount and heating load, the low temperature water storing tank is used for stabilizing steam exhaust waste heat recovery amount, thereby, the problem that the electricity generation peaking capacity is limited due to mutual coupling of electricity generation and heat supply in traditional operating modes of ‘heat determines electricity’ is solved, a CHP unit can participate in power grid load regulation, the power grid regulating capacity can be improved so as to deal with the condition of constantly increasing of electrical load trough-to-peak difference, and the absorptive capacity of a power grid for wind power generation can be improved so as to reduce phenomena of ‘fan suspending’.
Abstract:
The present invention relates to a gas-steam combined cycle centralized heat supply device and a heat supply method. The gas-steam combined cycle centralized heat supply device comprises a gas-steam combined cycle system connected with a thermal station through a heating network return water heating system; the gas-steam combined cycle system comprises a gas turbine connected with a direct contact type flue gas condensation heat exchanger and a steam turbine via a waste heat boiler; the thermal station comprises a hot water type absorption heat pump and a water-water heat exchanger; the heating network return water heating system comprises a steam type absorption heat pump for recovering flue gas waste heat and a steam-water heat exchanger. The present invention can be widely applied to the industry of power plant waste heat recovery.
Abstract:
The Application relates to a combined heating power and cooling apparatus with energy storage for an active distribution network and its operating method. The apparatus is comprised of a generation apparatus, a generator, a waste heat recovering and absorbing heat pump, a high temperature flue gas-water heat exchanger, a medium temperature flue gas-water heat exchanger, a low temperature flue gas-water heat exchanger, an energy storing electric heat pump, a high temperature energy storing canister, a low temperature energy storing canister, a cooling tower, a number of circulating water pumps and a number of valves. The operating method changes the traditional operation modes of the system “determining electricity based on heat” and “determining electricity based on cooling”, causes the system to regulate power of the generated electricity on grid, participate in the regulation of grid load, solve the problem of a limited ability of generation peak regulation due to the inter-coupling of power generation, heat supply and cooling supply.
Abstract:
An inner power plant portion and a heat exchange station portion. The inner power plant portion includes a heat exchanger, a waste heat recovery electric heat pump, an energy-storing electric heat pump, high/low temperature water storing tanks, a heating network heater, a valve and a circulating water pump; the heat exchange station portion includes high/low temperature water storing tanks, an electric heat pump, a heat exchanger, a valve and a circulating water pump; as for the operating method of the device, the device can operate in periods of an electrical load trough, an electrical load flat and an electrical load peak respectively through combination of different valve switches, the high temperature water storing tank is used for balancing the difference between system heat supply amount and heating load, the low temperature water storing tank is used for stabilizing steam exhaust waste heat recovery amount.