Abstract:
A noncontact power supply apparatus includes a coil unit having a coil for transmitting electric power to a power supply target by noncontact and an electromagnetic shield for reducing a leakage magnetic field of the coil. The electromagnetic shield is the laminate body in which the metal plates are laminated. A lubricant having a predetermined viscosity is applied to a contacting surface between the metal plates.
Abstract:
A power transmission coil unit provided with a board having at its back surface a component mounting part to which electronic components are mounted and a coil forming part at which a coil comprised of a conductor pattern is formed, a core arranged so as to abut against a back surface of the board and formed with a hole for housing the electronic components at a position facing the electronic components, and a protective member provided at a further front surface side of the power transmission coil unit than the component mounting part of the board and receiving a load applied to the power transmission coil unit. A space is formed on a back surface side of the facing portion of the protective member positioned at the location facing the component mounting part.
Abstract:
A method for manufacturing a powder core includes: making a mixed powder of a magnetic metal powder, a lubricant, and a glass powder; making a molded body by pressing the mixed powder; removing the lubricant from the molded body; and annealing the molded body from which the lubricant has been removed.
Abstract:
A method of manufacturing a pressed powder magnetic core disclosed herein may include: mixing soft magnetic metal particles, low-melting-point glass particles and lubricant and heating a mixture of the soft magnetic metal particles, the low-melting-point glass particles and the lubricant at a temperature that is higher than a melting point of the lubricant and is lower than a softening point of the low-melting-point glass particles so as to obtain powder of coated metal particles in which surfaces of the soft magnetic metal particles are coated by the lubricant and the low-melting-point glass particles are distributed in coating layers of the lubricant; filling a mold with the powder; press-molding the powder in the mold; and annealing the press-molded powder. In the pressed powder magnetic core, an amount of the low-melting-point glass particles may be 0.1 wt % to 5.0 wt % relative to an amount of the soft magnetic metal particles.
Abstract:
A dust core includes soft magnetic particles, a first coating layer, a second coating layer, and a third coating layer. The first coating layer is made of aluminum oxide with which at least a part of surfaces of the soft magnetic particles are coated. The second coating layer is made of aluminum nitride with which at least a part of a surface of the first coating layer is coated. The third coating layer is made of low-melting-point glass with which at least a part of a surface of the second coating layer is coated. The low-melting-point glass has a softening point lower than an annealing temperature of the soft magnetic particles.
Abstract:
A noncontact power supply device provided with one or more coil units and a cover housing the coil units inside of it. The cover is formed by joining a first sheet arranged at one surface sides of front and back surfaces of the coil units and a second sheet arranged at the other surface sides, the first sheet is a sheet covering the one surface sides of the coil units, the second sheet is a sheet having another surface part covering the other surface sides of the coil units and side surface parts covering side surfaces, the side surface parts of the second sheet are made to abut against side surfaces of the coil units by bending boundaries with the other surface part, and outer edge parts of the side surface parts of the second sheet and outer edge parts of the first sheet are joined.
Abstract:
A soft magnetic member is formed such that, when a differential relative permeability in an applied magnetic field of 100 A/m is represented by a first differential relative permeability μ′L, and when a differential relative permeability in an applied magnetic field of 40 kA/m is represented by a second differential relative permeability μ′H, a ratio of the first differential relative permeability μ′L to the second differential relative permeability μ′H satisfies a relationship of μ′L/μ′H≤10, and a magnetic flux density in an applied magnetic field of 60 kA/m is 1.15 T or higher.