Method and system for identifying targets in scenes shot by a camera

    公开(公告)号:US11003963B2

    公开(公告)日:2021-05-11

    申请号:US16474281

    申请日:2016-12-27

    Abstract: A monitoring system assesses the position of at least one target within an area. The monitoring system comprises a processing unit adapted to receive, from a camera, at least a frame depicting a scene of the area. The frames generated by the camera have a first resolution. The processing unit comprises: a database module storing, for each at least one target, a corresponding reference image, each reference image having a second resolution lower than the first resolution; a segmentation module configured to segment a received frame into frame segments, each frame segment having a resolution corresponding to the second resolution; a search module configured to implement a visual search procedure between each frame segment and a reference image comprising a depiction of the at least one target; and a position and translation module for calculating the position of the at least one target within the received frame.

    IMAGE ANALYSIS
    2.
    发明申请
    IMAGE ANALYSIS 有权
    图像分析

    公开(公告)号:US20150036936A1

    公开(公告)日:2015-02-05

    申请号:US14370108

    申请日:2012-12-20

    Abstract: A method for processing an image including: identifying a first group of keypoints in the image; for each keypoint of the first group, identifying at least one corresponding keypoint local feature related to the each keypoint; for the at least one keypoint local feature, calculating a corresponding local feature relevance probability; calculating a keypoint relevance probability based on the local feature relevance probabilities of the at least one local feature; selecting keypoints, among the keypoints of the first group, having the highest keypoint relevance probabilities to form a second group of keypoints, and exploiting the keypoints of the second group for analyzing the image. The local feature relevance probability calculated for a local feature of a keypoint is obtained by comparing the value assumed by the local feature with a corresponding reference statistical distribution of values of the local feature.

    Abstract translation: 一种用于处理图像的方法,包括:识别图像中的第一组关键点; 对于第一组的每个关键点,识别与每个关键点相关的至少一个相应的关键点局部特征; 对于所述至少一个关键点局部特征,计算相应的局部特征相关概率; 基于所述至少一个局部特征的所述局部特征相关性概率来计算关键点相关概率; 在第一组的关键点中选择具有最高关键点相关性概率的关键点,以形成第二组关键点,以及利用第二组的关键点来分析图像。 通过将局部特征假定的值与本地特征值的相应参考统计分布进行比较,获得关键点的局部特征所计算的局部特征相关概率。

    Method and system for image analysis
    3.
    发明授权
    Method and system for image analysis 有权
    图像分析方法与系统

    公开(公告)号:US09319690B2

    公开(公告)日:2016-04-19

    申请号:US14396525

    申请日:2013-04-19

    CPC classification number: H04N19/124 G06T9/00

    Abstract: A method for processing an image includes: identifying a group of keypoints in the image; for each keypoint of the group; a) calculating a corresponding descriptor array including a plurality of array elements, each array element storing values taken by a corresponding color gradient histogram of a respective sub-region of the image in the neighborhood of the keypoint; b) generating at least one compressed descriptor array by compressing at least one portion of the descriptor array by vector quantization using a codebook including a plurality of codewords.

    Abstract translation: 一种用于处理图像的方法包括:识别图像中的一组关键点; 对于组的每个关键点; a)计算包括多个阵列元素的对应描述符阵列,每个阵列元素存储由所述关键点附近的图像的相应子区域的对应颜色梯度直方图获取的值; b)通过使用包括多个码字的码本的矢量量化来压缩描述符阵列的至少一部分来生成至少一个压缩描述符阵列。

    Image analysis
    4.
    发明授权
    Image analysis 有权
    图像分析

    公开(公告)号:US09269020B2

    公开(公告)日:2016-02-23

    申请号:US14370108

    申请日:2012-12-20

    Abstract: A method for processing an image including: identifying a first group of keypoints in the image; for each keypoint of the first group, identifying at least one corresponding keypoint local feature related to the each keypoint; for the at least one keypoint local feature, calculating a corresponding local feature relevance probability; calculating a keypoint relevance probability based on the local feature relevance probabilities of the at least one local feature; selecting keypoints, among the keypoints of the first group, having the highest keypoint relevance probabilities to form a second group of keypoints, and exploiting the keypoints of the second group for analyzing the image. The local feature relevance probability calculated for a local feature of a keypoint is obtained by comparing the value assumed by the local feature with a corresponding reference statistical distribution of values of the local feature.

    Abstract translation: 一种用于处理图像的方法,包括:识别图像中的第一组关键点; 对于第一组的每个关键点,识别与每个关键点相关的至少一个相应的关键点局部特征; 对于所述至少一个关键点局部特征,计算相应的局部特征相关概率; 基于所述至少一个局部特征的所述局部特征相关性概率来计算关键点相关概率; 在第一组的关键点中选择具有最高关键点相关性概率的关键点,以形成第二组关键点,以及利用第二组的关键点来分析图像。 通过将局部特征假定的值与本地特征值的相应参考统计分布进行比较,获得关键点的局部特征所计算的局部特征相关概率。

    METHOD AND SYSTEM FOR IMAGE ANALYSIS
    5.
    发明申请
    METHOD AND SYSTEM FOR IMAGE ANALYSIS 有权
    图像分析方法与系统

    公开(公告)号:US20140363078A1

    公开(公告)日:2014-12-11

    申请号:US14370133

    申请日:2012-10-12

    Abstract: A method for processing an image, including: identifying a group of keypoints in the image; for each keypoint, calculating a corresponding descriptor array including plural array elements, each array element storing values taken by a corresponding color gradient histogram of a respective sub-region of the image in the neighborhood of the keypoint; for each keypoint, subdividing the descriptor array in at least two sub-arrays each including a respective number of elements of the descriptor array, and generating a compressed descriptor array including a corresponding compressed sub-array for each of the at least two sub-arrays, each compressed sub-array obtained by compressing the corresponding sub-array by vector quantization using a respective codebook; exploiting the compressed descriptor arrays of the keypoints for image analysis. For each keypoint of the group, the subdividing is based on correlation relationships among color gradient histograms with values stored in the elements of the descriptor array of each keypoint.

    Abstract translation: 一种用于处理图像的方法,包括:识别图像中的一组关键点; 对于每个关键点,计算包括多个数组元素的相应描述符阵列,每个数组元素存储由关键点附近的图像的相应子区域的对应颜色梯度直方图获取的值; 对于每个关键点,在至少两个子阵列中分割描述符阵列,每个子阵列包括描述符阵列的相应数量的元素,并且生成包括用于至少两个子阵列中的每一个的对应压缩子阵列的压缩描述符阵列 通过使用相应的码本通过矢量量化压缩相应子阵列而获得的每个压缩子阵列; 利用关键点的压缩描述符数组进行图像分析。 对于组的每个关键点,细分是基于存储在每个关键点的描述符阵列的元素中的值的色彩梯度直方图之间的相关关系。

    Neural networks having reduced number of parameters

    公开(公告)号:US12271812B2

    公开(公告)日:2025-04-08

    申请号:US17251508

    申请日:2019-07-18

    Abstract: A method includes providing a neural network having a set of weights. The neural network receives an input data structure for generating a corresponding output array according to values of the set of weights. The neural network is trained to obtain a trained neural network. The training includes setting values of the set of weights with a gradient descent algorithm which exploits a cost function including a loss term and a regularization term. The trained neural network is deployed on a device through a communication network, and used by the device. The regularization term is based on a rate of change of elements of the output array caused by variations of the set of weights values.

    Keypoint identification
    7.
    发明授权

    公开(公告)号:US10152646B2

    公开(公告)日:2018-12-11

    申请号:US14906218

    申请日:2014-07-23

    Abstract: A method for identifying keypoints in a digital image including a set of pixels. Each pixel has associated thereto a respective value of an image representative parameter. The method includes approximating a filtered image. The filtered image depends on a filtering parameter and includes for each pixel of the image a filtering function that depends on the filtering parameter to calculate a filtered value of the value of the representative parameter of the pixel. The approximating includes: a) generating a set of base filtered images; each base filtered image is the image filtered with a respective value of the filtering parameter; b) for each pixel of at least a subset of the set of pixels, approximating the filtering function by a respective approximation function based on the base filtered images; the approximation function is a function of the filtering parameter within a predefined range of the filtering parameter.

    Method and system for image analysis based upon correlation relationships of sub-arrays of a descriptor array
    8.
    发明授权
    Method and system for image analysis based upon correlation relationships of sub-arrays of a descriptor array 有权
    基于描述符数组的子阵列的相关关系的图像分析方法和系统

    公开(公告)号:US09412037B2

    公开(公告)日:2016-08-09

    申请号:US14370133

    申请日:2012-10-12

    Abstract: A method for processing an image, including: identifying a group of keypoints in the image; for each keypoint, calculating a corresponding descriptor array including plural array elements, each array element storing values taken by a corresponding color gradient histogram of a respective sub-region of the image in the neighborhood of the keypoint; for each keypoint, subdividing the descriptor array in at least two sub-arrays each including a respective number of elements of the descriptor array, and generating a compressed descriptor array including a corresponding compressed sub-array for each of the at least two sub-arrays, each compressed sub-array obtained by compressing the corresponding sub-array by vector quantization using a respective codebook; exploiting the compressed descriptor arrays of the keypoints for image analysis. For each keypoint of the group, the subdividing is based on correlation relationships among color gradient histograms with values stored in the elements of the descriptor array of each keypoint.

    Abstract translation: 一种用于处理图像的方法,包括:识别图像中的一组关键点; 对于每个关键点,计算包括多个数组元素的相应描述符阵列,每个数组元素存储由关键点附近的图像的相应子区域的对应颜色梯度直方图获取的值; 对于每个关键点,在至少两个子阵列中分割描述符阵列,每个子阵列包括描述符阵列的相应数量的元素,并且生成包括用于至少两个子阵列中的每一个的对应压缩子阵列的压缩描述符阵列 通过使用相应的码本通过矢量量化压缩相应子阵列而获得的每个压缩子阵列; 利用关键点的压缩描述符数组进行图像分析。 对于组的每个关键点,细分是基于存储在每个关键点的描述符阵列的元素中的值的色彩梯度直方图之间的相关关系。

    Image analysis
    10.
    发明授权
    Image analysis 有权
    图像分析

    公开(公告)号:US09373056B2

    公开(公告)日:2016-06-21

    申请号:US14991556

    申请日:2016-01-08

    Abstract: A method for processing an image is proposed. The method comprises identifying a first group of keypoints in the image. For each keypoint of the first group, the method provides for identifying at least one corresponding keypoint local feature related to said each keypoint; for said at least one keypoint local feature, calculating a corresponding local feature relevance probability; calculating a keypoint relevance probability based on the local feature relevance probabilities of said at least one local feature. The method further comprises selecting keypoints, among the keypoints of the first group, having the highest keypoint relevance probabilities to form a second group of keypoints, and exploiting the keypoints of the second group for analyzing the image. The local feature relevance probability calculated for a local feature of a keypoint is obtained by comparing the value assumed by said local feature with a corresponding reference statistical distribution of values of said local feature.

    Abstract translation: 提出了一种处理图像的方法。 该方法包括识别图像中的第一组关键点。 对于第一组的每个关键点,该方法提供用于识别与所述每个关键点相关的至少一个对应的关键点局部特征; 对于所述至少一个关键点局部特征,计算相应的局部特征相关概率; 基于所述至少一个局部特征的局部特征相关性概率来计算关键点相关概率。 该方法还包括:选择具有最高关键点相关性概率的第一组的关键点中的关键点,以形成第二组关键点,以及利用第二组的关键点来分析图像。 通过将所述局部特征所假设的值与所述局部特征的值的相应参考统计分布进行比较来获得针对关键点的局部特征计算的局部特征相关概率。

Patent Agency Ranking