Abstract:
A thermally assisted magnetic head slider includes an air bearing surface facing to a magnetic recording medium, a read portion, and a write portion including a write element, a waveguide for guiding light generated by the light source module, and a plasmon unit provided around the write portion and the waveguide. A first coat layer with a first thickness which has a first light absorption index is covered on an opposed-to-medium surface of the read portion, and a second coat layer with a second thickness which has a second light absorption index is covered on an opposed-to medium surface of the write portion, wherein the second thickness is larger than the first thickness, and the second light absorption index is smaller than the first light absorption index. The slider can protect the write portion and improve the reading performance of the read portion.
Abstract:
A thermal assisted magnetic recording head of the present invention has an air bearing surface (ABS) opposite to a magnetic recording medium, a core that can propagate laser light as propagating light, a plasmon generator that includes a generator front end surface facing the ABS, and a main pole that faces the ABS and emits magnetic flux to the magnetic recording medium. The plasmon generator is opposite to a part of the core and extends to the generator front surface, is coupled with a portion of the propagating light that propagates through the core in the surface plasmon mode to generate a surface plasmon, propagates the surface plasmon to the generator front end surface, and generates near-field light (NF light) at the generator front end surface to irradiate the NF light to the magnetic recording medium. The ABS has a protrusion that is closer to the leading side than the generator front end surface in the down track direction, and that protrudes more toward the magnetic recording medium than the generator front end surface upon operation of the thermal assisted magnetic recording head.
Abstract:
A thermally assisted magnetic write head includes a waveguide having a first end surface included in an air bearing surface; a magnetic pole having a second end surface included in the air bearing surface; a plasmon generator having a third end surface included in the air bearing surface; a first protective film directly covering a part of the second end surface of the magnetic pole at least; and a second protective film directly covering the first end surface of the waveguide and the third end surface of the plasmon generator. The configuration can reduce recording density and improve thermal stability, furthermore increase the producing yield.
Abstract:
A magnetic head includes a reading part, a recording part that is laminated on the reading part in a planer view, a recording part expansion heater, a reading part expansion heater, and a thermal expansion promoting layer that is prepared at a position closer to the reading part than to the recording part and extends to an air bearing surface.
Abstract:
The laser diode includes an electrode pad layer, being connected to an electrode, and an outer surface in which the electrode pad layer is formed. The electrode pad layer includes a solder-bonding pad part and a solder-contact preventing part. The solder-contact preventing part is formed with small wettability material having solder wettability which is smaller than solder wettability of the solder-bonding pad part. The solder-bonding pad part and the solder-contact preventing part are formed so that a pad height, being a height from the outer surface to a surface of the solder-bonding pad part, is larger than a preventing height, being a height from the outer surface to a surface of the solder-contact preventing part.
Abstract:
A thermally assisted magnetic head includes a slider having a slider substrate and a magnetic head part, and a light source unit having a laser diode and a sub-mount. The magnetic head part includes a medium-opposite surface, a light source-opposite surface, and a slider-front end surface. The sub-mount includes a joined-end surface and a mount-front end surface, the laser diode includes an electrode surface and an LD-front end surface. The light source unit includes a shift joined structure which the laser diode is joined to a shift area of the joined-end surface, and the light source unit is mounted on the slider substrate so that the electrode surface intersects with a laminated surface of the magnetic head part. The shift area is set in a position which is shifted so that the LD-front end surface is away from the slider-front end surface than the mount-front end surface.