Abstract:
A magnetic sensor includes an MR element and a pair of magnets. The MR element includes a magnetization pinned layer having a magnetization pinned in a direction parallel to an X direction, a free layer having a magnetization that varies depending on an X-direction component of an external magnetic field, and a nonmagnetic layer interposed between the magnetization pinned layer and the free layer. The magnetization pinned layer, the nonmagnetic layer and the free layer are stacked to be adjacent in a Y direction. The free layer receives an interlayer coupling magnetic field in a direction parallel to the X direction resulting from the magnetization pinned layer. The pair of magnets applies a bias magnetic field to the free layer. The bias magnetic field includes a first component in a direction opposite to that of the interlayer coupling magnetic field and a second component in a Z direction.
Abstract:
A magnetic sensor system includes a scale and a magnetic sensor arranged in a relative positional relationship variable in a first direction, and a computing unit. The magnetic sensor includes a first detection circuit disposed at a first position and a second detection circuit disposed at a second position. Each of the first and second detection circuits includes a spin-valve magnetoresistive element. The difference between the first position and the second position in the first direction is smaller than or equal to 1.25% of a one-pitch amount of change in the relative positional relationship between the scale and the magnetic sensor. The computing unit generates an abnormal-event determination signal indicative of the presence of an abnormal event in the magnetic sensor by computation using detection signals from the first and second detection circuits.