Abstract:
An aluminum base wire includes a core wire composed of pure aluminum or an aluminum alloy; a plurality of coating pieces provided so as to be scattered on an outer periphery of the core wire; and a coating layer provided on the outer periphery of the core wire and an outer periphery of each of the plurality of coating pieces. The coating layer includes a first layer that is provided continuously on the outer periphery of the core wire between adjacent coating pieces and the outer periphery of each of the plurality of coating pieces, and a second layer provided on an outer periphery of the first layer. The plurality of coating pieces are each composed of copper or a copper alloy, the first layer is composed of metals that include copper and tin, and the second layer is composed of tin or a tin alloy.
Abstract:
Provided is a conductive resin molded body that has a three-dimensional network structure and is suitable for producing an aluminum porous body in which the water adsorption amount is small. The conductive resin molded body includes a resin molded body having a three-dimensional network structure and a conductive layer at least containing carbon black and carboxymethylcellulose on the surface of the skeleton of the resin molded body. The conductive layer is preferably formed by applying a carbon coating material at least containing carbon black, carboxymethylcellulose, and water to the surface of the skeleton of the resin molded body and subsequently drying the carbon coating material; and the carbon coating material preferably has a viscosity of 100 mPa·s or more and 600 mPa·s or less.
Abstract:
A lithium battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte, wherein the positive electrode includes a metal positive electrode current collector having a three-dimensional network hollow skeleton and a positive electrode mixture, which is filled in the positive electrode current collector and which contains a positive electrode active material, the thickness of the positive electrode is 0.2 to 5 mm, the nonaqueous electrolyte contains an ionic liquid and a lithium salt, the ionic liquid is a molten salt of a cation and an anion, and the concentration of the lithium salt in the nonaqueous electrolyte is 0.8 to 6.2 mol/L.
Abstract:
A three-dimensional network aluminum porous body which enables to produce an electrode continuously, an electrode using the aluminum porous body, and a method for producing the electrode is disclosed. A long sheet-shaped three-dimensional network aluminum porous body is provided to be used as a base material in a method for producing an electrode including at least winding off, a thickness adjustment step, a lead welding step, an active material filling step, a drying step, a compressing step, a cutting step and winding-up, wherein the three-dimensional network aluminum porous body has a tensile strength of 0.2 MPa or more and 5 MPa or less.
Abstract:
Provided is an aluminum plating solution capable of continuously manufacturing an aluminum film, the surface of which is smooth and which has good elongation. The aluminum plating solution capable of electrodepositing aluminum on a surface of a base contains, as components, (A) an aluminum halide, (B) at least one compound selected from the group consisting of alkylimidazolium halides, alkylpyridinium halides, and urea compounds, and (C1) at least one selected from the group consisting of ammonium salts, phosphonium salts, sulfonium salts, amine compounds, phosphine compounds, and sulfide compounds. The component (C1) has, as at least one side chain, a straight-chain or branched alkyl group having 8 or more and 36 or less carbon atoms. A mixing ratio of the component (A) and the component (B) is in a range of 1:1 to 3:1 in terms of molar ratio. A concentration of the component (C1) is 1.0 g/L or more and 45 g/L or less.
Abstract:
A metal tube including a metal substrate and a metal porous body disposed on at least part of a surface of the metal substrate. The metal tube is obtained by the steps of joining the metal porous body to at least part of the surface of the metal substrate in flat plate form; and forming the metal substrate with the metal porous body joined thereto into a tubular shape.
Abstract:
A molten-salt electrolysis plating apparatus that uses a molten salt for a liquid electrolyte satisfies any one of (i) to (iv) below. (i) At least a portion that is in contact with the liquid electrolyte contains a vinyl chloride resin, and the vinyl chloride resin has a chlorine content of 51% by mass or more. (ii) At least a portion that is in contact with the liquid electrolyte contains a vinyl chloride resin, and the vinyl chloride resin contains titanium oxide. (iii) At least a portion that is in contact with the liquid electrolyte contains a polyethylene resin, and the polyethylene resin has a density of 0.940 g/cm3 or more. (iv) At least a portion that is in contact with the liquid electrolyte contains a polyethylene resin, and the polyethylene resin has a tensile strength of 15 MPa or more.
Abstract translation:使用熔融盐作为液体电解质的熔融盐电解电镀装置满足下述(i)〜(iv)中的任一种。 (i)至少与电解液接触的部分含有氯乙烯树脂,氯乙烯树脂的氯含量为51质量%以上。 (ii)至少与电解液接触的部分含有氯乙烯树脂,氯乙烯树脂含有氧化钛。 (iii)至少与电解液接触的部分含有聚乙烯树脂,聚乙烯树脂的密度为0.940g / cm 3以上。 (iv)至少与电解液接触的部分含有聚乙烯树脂,聚乙烯树脂的拉伸强度为15MPa以上。
Abstract:
It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
Abstract:
An aluminum plating film contains aluminum as a main component. The aluminum plating film has, between coating surfaces at both ends in a thickness direction, an intervening layer that contains a metal having a lower ionization tendency than aluminum or an intervening layer that contains an alloy of aluminum and a metal having a lower ionization tendency than aluminum.
Abstract:
Provided are a manufacturing method and a manufacturing apparatus for an aluminum film in which moisture and oxygen do not intrude into a plating chamber. A manufacturing method for an aluminum film, in which aluminum is electrodeposited on a surface of a long, porous resin substrate imparted with electrical conductivity in a molten salt electrolytic solution, includes a step of transferring the substrate W into a plating chamber 1 through a sealing chamber 4 disposed on the entrance side of the plating chamber; a step of electrodepositing an aluminum film on the surface of the substrate W in the plating chamber 1; and a step of transferring the substrate having the aluminum film electrodeposited thereon from the plating chamber 1 through a sealing chamber 5 disposed on the exit side of the plating chamber 1, in which an inert gas is supplied into the plating chamber such that the plating chamber has a positive pressure relative to outside air, and the inert gas is forcibly discharged from an inert gas exhaust pipe 7 provided on each of the two sealing chambers.