Method of launching a spacecraft into low earth orbit using a non-line-of-sight optical power transfer system

    公开(公告)号:US10705297B2

    公开(公告)日:2020-07-07

    申请号:US16171167

    申请日:2018-10-25

    摘要: A method of launching a spacecraft into low Earth orbit using a non-line-of-sight optical power transfer system. The method includes generating optical power at a base station and using an optical fiber to transmit the optical power generated to a launch vehicle via an actively cooled fiber spooler thereon. The optical power received by the launch vehicle is converted to another form of energy usable by the launch vehicle. The optical power is optically focused into a reaction chamber to impinge on a refractory target. A working fluid is regeneratively fed to a heat exchanger contained within the actively cooled fiber spooler. The working fluid is pre-heated within the heat exchanger and injected into the reaction chamber where the working fluid heats and expands. The exhaust is channeled through a rocket nozzle to produce thrust. In an alternative embodiment, the optical fiber expended during launch of a spacecraft is recovered.

    Power Conversion Module for Use With Optical Energy Transfer and Conversion System

    公开(公告)号:US20210313481A1

    公开(公告)日:2021-10-07

    申请号:US17352019

    申请日:2021-06-18

    摘要: A power conversion module for use with optical energy transfer and conversion system has a hemi-spherically configured housing, an array of photovoltaic chips mounted on the interior thereof, and inlet and outlet ports connected thereto. An end plate connected to the housing defines a cavity. An actively cooled high-power connector has one end connected to a fiber optic cable and the opposite end traversing the end plate and extending within the cavity. Beam forming optics within the cavity are in optical communication with the connector to disburse received optical energy in a hemispherical emission pattern of uniform flux toward an array of photovoltaic chips mounted in complementary configuration to the housing within the cavity, each chip spaced equidistantly from the beam forming optics. A heat sink within the housing has a plurality of fluid channels therethrough through which a work fluid removes heat via the outlet port. In alternative embodiments, the power conversion module includes a housing having a spherical configuration and a plurality of power conversion modules.