Abstract:
A combustion chamber head for a gas turbine, with the gas turbine having a substantially annular outer combustion chamber wall, at least one substantially annular inner combustion chamber wall, and several burners 106 distributed around a circumference of the gas turbine. Several segment-like head segments are arranged over the circumference in equal number to the number of burners and extend in the radial direction between the inner combustion chamber wall and the outer combustion chamber wall and in the circumferential direction between radial planes formed by the burner axes.
Abstract:
A gas turbine combustion chamber has a starter film for cooling the combustion chamber wall, and a combustion chamber head, into which cooling air can be introduced and which is confined to the combustion chamber by a heat shield (5). A base plate (2) is arranged at a certain distance from the heat shield (5) and the base plate (2) is provided with several openings (6) in its rim area for passing the cooling air. Center axes (17) of the openings (6) are inclined at a shallow angle (α) relative to the combustion chamber wall (4).
Abstract:
A combustion chamber head of a gas turbine has a confinement enclosing a dampening volume (207) and including a combustion chamber-opposite confinement (206) and a combustion chamber-side confinement (210). The combustion chamber-side confinement (210) is provided as perforated wall (210). In the edge area of the combustion chamber-side confinement (210), cooling air can be routed onto the combustion chamber-side confinement (210) via recesses (203) in the confinement (206). This cooling air, which flows along the combustion chamber-side confinement (210), crosses the cooling air flow through the perforated wall (210) in the combustion chamber (101) without mixing with the latter, as both are separated by walls.
Abstract:
A combustion chamber for a gas turbine has a metallic supporting structure 6 and several circumferentially distributed ceramic bodies 2 attached to the supporting structure 6. The ceramic bodies 2 each have a straight hollow tubular profile and are arranged as individual segments At least one hollow metallic body 1 having air-passage holes 5 for the passage of cooling air is provided in each ceramic body 2.
Abstract:
A gas turbine combustion chamber includes an essentially cylindrical flame tube 2, which is made of a ceramic material and circumferentially divided into several circumferential elements 10, 11, 12.
Abstract:
A combustion chamber head of a gas turbine has a confinement enclosing a dampening volume (207) and including a combustion chamber-opposite confinement (206) and a combustion chamber-side confinement (210). The combustion chamber-side confinement (210) is provided as perforated wall (210). In the edge area of the combustion chamber-side confinement (210), cooling air can be routed onto the combustion chamber-side confinement (210) via recesses (203) in the confinement (206). This cooling air, which flows along the combustion chamber-side confinement (210), crosses the cooling air flow through the perforated wall (210) in the combustion chamber (101) without mixing with the latter, as both are separated by walls.
Abstract:
A gas turbine combustion chamber includes an essentially cylindrical flame tube 2, which is made of a ceramic material and circumferentially divided into several circumferential elements 10, 11, 12.
Abstract:
A combustion chamber for a gas turbine has a metallic supporting structure 6 and several circumferentially distributed ceramic bodies 2 attached to the supporting structure 6. The ceramic bodies 2 each have a straight hollow tubular profile and are arranged as individual segments At least one hollow metallic body 1 having air-passage holes 5 for the passage of cooling air is provided in each ceramic body 2.