摘要:
Provided are a method for preparing metallic nickel powders capable of decreasing the content of an alkaline metal in the metallic nickel powders, metallic nickel powders with the low content of an alkaline metal, a conductive paste including metallic nickel powders with the low content of an alkaline metal, and a multi-layer ceramic capacitor (MLCC) including a nickel inner electrode with the low content of an alkaline metal. The method for preparing the metallic nickel powders includes heating a mixture including an organic base, a nickel precursor compound, and a polyol. Wherein, the nickel precursor compound is converted to the metallic nickel powders through reduction by the organic base and the polyol. In the method, the organic base is used instead of the hydroxide of an alkaline metal such as NaOH and KOH. Therefore, the content of an alkaline metal such as sodium and potassium that can be incorporated as an impurity into the metallic nickel powders can be significantly reduced.
摘要:
Provided are a method for preparing metallic nickel powders capable of decreasing the content of an alkaline metal in the metallic nickel powders, metallic nickel powders with the low content of an alkaline metal, a conductive paste including metallic nickel powders with the low content of an alkaline metal, and a multi-layer ceramic capacitor (MLCC) including a nickel inner electrode with the low content of an alkaline metal. The method for preparing the metallic nickel powders includes heating a mixture including an organic base, a nickel precursor compound, and a polyol. Wherein, the nickel precursor compound is converted to the metallic nickel powders through reduction by the organic base and the polyol. In the method, the organic base is used instead of the hydroxide of an alkaline metal such as NaOH and KOH. Therefore, the content of an alkaline metal such as sodium and potassium that can be incorporated as an impurity into the metallic nickel powders can be significantly reduced.
摘要:
A display driver and display driving method process display data received from a central processing unit (CPU) and output display data voltages. The display driver includes a synchronization controller that sends a reference synchronization signal to the CPU, and controls the CPU to synchronize a write clock with the reference synchronization signal and to send the write clock. A write clock detector detects whether the write clock is received from the CPU and outputs a selection signal in response. A frame memory receives and stores display data of a current frame synchronized with the write clock. A gray-level compensator generates gray-level compensated display data based on the display data of a current frame and display data of a previous frame previously stored in the frame memory. A selector outputs one of the gray-level compensated display data or the display data previously stored in the frame memory as scan data in response to the selection signal.