COMPRESSING IMAGE-TO-IMAGE MODELS WITH AVERAGE SMOOTHING

    公开(公告)号:US20250054199A1

    公开(公告)日:2025-02-13

    申请号:US18923108

    申请日:2024-10-22

    Applicant: Snap Inc.

    Abstract: System and methods for compressing image-to-image models. Generative Adversarial Networks (GANs) have achieved success in generating high-fidelity images. An image compression system and method adds a novel variant to class-dependent parameters (CLADE), referred to as CLADE-Avg, which recovers the image quality without introducing extra computational cost. An extra layer of average smoothing is performed between the parameter and normalization layers. Compared to CLADE, this image compression system and method smooths abrupt boundaries, and introduces more possible values for the scaling and shift. In addition, the kernel size for the average smoothing can be selected as a hyperparameter, such as a 3×3 kernel size. This method does not introduce extra multiplications but only addition, and thus does not introduce much computational overhead, as the division can be absorbed into the parameters after training.

    LATENT DIFFUSION MODEL AUTODECODERS

    公开(公告)号:US20240395028A1

    公开(公告)日:2024-11-28

    申请号:US18400677

    申请日:2023-12-29

    Applicant: Snap Inc.

    Abstract: Described is a system for improving machine learning models. In some cases, the system improves such models by identifying an autoencoder for a latent diffusion machine learning model, the latent diffusion machine learning model is trained to receive text as input and output an image based on the received text. The system identifies a number of channels in a decoder of the autoencoder, the decoder being configured to receive latent features as input and output images. The system further identifies a performance characteristic of the decoder and changes the node topology of the decoder based on the performance characteristic to generate an updated decoder. The system retrains the latent diffusion machine learning model using the updated decoder by inputting latent features to the updated decoder, receiving an outputted image from the updated decoder, and updating one or more weights of the decoder based on an assessment of the outputted image.

    STEP DISTILLATION FOR LATENT DIFFUSION MODELS

    公开(公告)号:US20240394843A1

    公开(公告)日:2024-11-28

    申请号:US18434411

    申请日:2024-02-06

    Applicant: Snap Inc.

    Abstract: Described is a system for improving machine learning models by accessing a first latent diffusion machine learning model, the first latent diffusion machine learning model trained to perform a first number of denoising steps, accessing a second latent diffusion machine learning model that was derived from the first latent diffusion machine learning model, the second latent diffusion machine learning model trained to perform a second number of denoising steps, generating noise data, processing the noise data via the first latent diffusion machine learning model to generate one or more first images, processing the noise data via the second latent diffusion machine learning model to generate one or more second images, and modify a parameter of the second latent diffusion machine learning model based on a comparison of the one or more first images with the one or more second images.

    Compressing image-to-image models with average smoothing

    公开(公告)号:US12154303B2

    公开(公告)日:2024-11-26

    申请号:US18238979

    申请日:2023-08-28

    Applicant: Snap Inc.

    Abstract: System and methods for compressing image-to-image models. Generative Adversarial Networks (GANs) have achieved success in generating high-fidelity images. An image compression system and method adds a novel variant to class-dependent parameters (CLADE), referred to as CLADE-Avg, which recovers the image quality without introducing extra computational cost. An extra layer of average smoothing is performed between the parameter and normalization layers. Compared to CLADE, this image compression system and method smooths abrupt boundaries, and introduces more possible values for the scaling and shift. In addition, the kernel size for the average smoothing can be selected as a hyperparameter, such as a 3×3 kernel size. This method does not introduce extra multiplications but only addition, and thus does not introduce much computational overhead, as the division can be absorbed into the parameters after training.

    LOSS DETERMINATION FOR LATENT DIFFUSION MODELS

    公开(公告)号:US20240394933A1

    公开(公告)日:2024-11-28

    申请号:US18596452

    申请日:2024-03-05

    Applicant: Snap Inc.

    Abstract: Described is a system for improving machine learning models by accessing a first latent diffusion machine learning model, accessing a second latent diffusion machine learning model that was derived from the first latent diffusion machine learning model, the second latent diffusion machine learning model trained to perform a second number of denoising steps, generating noise data, processing the noise data via the first latent diffusion machine learning model to generate one or more first latent features, processing the noise data via the second latent diffusion machine learning model to generate one or more second latent features, and inputting the one or more first latent features and the one or more second latent features into a loss function. The system then modifies a parameter of the second latent diffusion machine learning model based on the output of the loss function.

    COMPRESSING IMAGE-TO-IMAGE MODELS

    公开(公告)号:US20220207329A1

    公开(公告)日:2022-06-30

    申请号:US17558327

    申请日:2021-12-21

    Applicant: Snap Inc.

    Abstract: Systems and methods herein describe an image compression system. The image compression system generates a first generative adversarial network (GAN), identifies a threshold, based on the threshold, generates a second GAN by pruning channels of the first GAN, trains the second GAN using similarity-based knowledge distillation from the first GAN, and stores the trained second GAN.

Patent Agency Ranking