摘要:
For heart segmentation in magnetic resonance or other medical imaging, deep learning trains a neural network. The neural network, such as U-net, includes at least one long-short-term memory (LSTM), such as a convolutional LSTM. The LSTM incorporates the temporal characteristics with the spatial to improve accuracy of the segmentation by the machine-learnt network.
摘要:
Systems and methods for determining optimized imaging parameters for imaging a patient include learning a model of a relationship between known imaging parameters and a quality measure, the known imaging parameters and the quality measure being determined from training data. Optimized imaging parameters are determined by optimizing the quality measure using the learned model. Images of the patient are acquired using the optimized imaging parameters.
摘要:
Methods and systems for artificial intelligence based medical image segmentation are disclosed. In a method for autonomous artificial intelligence based medical image segmentation, a medical image of a patient is received. A current segmentation context is automatically determined based on the medical image and at least one segmentation algorithm is automatically selected from a plurality of segmentation algorithms based on the current segmentation context. A target anatomical structure is segmented in the medical image using the selected at least one segmentation algorithm.
摘要:
Systems and methods for determining optimized imaging parameters for imaging a patient include learning a model of a relationship between known imaging parameters and a quality measure, the known imaging parameters and the quality measure being determined from training data. Optimized imaging parameters are determined by optimizing the quality measure using the learned model. Images of the patient are acquired using the optimized imaging parameters.
摘要:
A computer-implemented method for performing isotropic reconstruction of Magnetic Resonance Imaging (MRI) data includes receiving a stack of slices acquired by an MRI device in two or more directions and reslicing the stack of slices into (i) an acquired view stack comprising high-resolution slices acquired in-plane, and (ii) a reslice stack comprising degraded slices acquired out of plane. An estimated slice profile is generated based on the stack of slices and the acquired view stack is convolved with the estimated slice profile to yield a simulated distorted slice stack. The simulated distorted slice stack is subtracted from the acquired view stack to yield a high-frequency band estimate and the high-frequency band estimate is combined with the reslice stack to yield isotropic reconstruction results.
摘要:
A learning-based magnetic resonance fingerprinting (MRF) reconstruction method for reconstructing an MR image of a tissue space in an MR scan subject for a particular MR sequence is disclosed. The method involves using a machine-learning algorithm that has been trained to generate a set of tissue parameters from acquired MR signal evolution without using a dictionary or dictionary matching.
摘要:
A method for computing global longitudinal strain from cine magnetic resonance (MR) images includes automatically detecting landmark points in each MR long axis image frame included in a cine MR image sequence. A deformation field is determined between every pair of frames based on the landmark points. Myocardial pixels in the frames are labeled using a deep learning framework to yield myocardium masks. These myocardium masks are propagated to each frame using the deformation fields. A polar transformation is performed on each of the masked frames. The contours of the myocardium in each transformed frame are computed using a shortest path algorithm. Next, longitudinal strain is calculated at every pixel in the myocardium for the polar frames using the contours of the myocardium. Then, global longitudinal strain is computed by averaging the longitudinal strain at every pixel in the myocardium of the transformed frames.
摘要:
A computer-implemented method for performing isotropic reconstruction of Magnetic Resonance Imaging (MRI) data includes receiving a stack of slices acquired by an MRI device in two or more directions and reslicing the stack of slices into (i) an acquired view stack comprising high-resolution slices acquired in-plane, and (ii) a reslice stack comprising degraded slices acquired out of plane. An estimated slice profile is generated based on the stack of slices and the acquired view stack is convolved with the estimated slice profile to yield a simulated distorted slice stack. The simulated distorted slice stack is subtracted from the acquired view stack to yield a high-frequency band estimate and the high-frequency band estimate is combined with the reslice stack to yield isotropic reconstruction results.
摘要:
A computer-implemented method for determining magnetic field inversion time of a tissue species includes generating a T1-mapping image of a tissue of interest, the T1-mapping image comprising a plurality of T1 values within an expected range of T1 values for the tissue of interest. An image mask is created based on predetermined identification information about the tissue of interest. Next, an updated image mask is created based on a largest connected region in the image mask. The updated image mask is applied to the T1-mapping image to yield a masked image. Then, a mean relaxation time value is determined for the largest connected region. The mean relaxation time value is then used to determine a time point for nulling longitudinal magnetization.
摘要:
A computer-implemented method of performing deep learning based isocenter positioning includes acquiring a plurality of slabs covering an anatomical area of interest that comprises a patient's heart. For each slab, one or more deep learning models are used to determine a likelihood score for the slab indicating a probability that the slab includes at least a portion of the patient's heart. A center position of the patient's heart may then be determined based on the likelihood scores determined for the plurality of slabs.