GAS TURBINE SEAL ARRANGEMENT
    2.
    发明申请

    公开(公告)号:US20180223683A1

    公开(公告)日:2018-08-09

    申请号:US15743117

    申请日:2015-07-20

    CPC classification number: F01D11/001 F01D5/081 F01D11/02 F01D25/12

    Abstract: A turbine arrangement including a rotor and a stator surrounding the rotor and comprising guide vane segments, each guide vane segment comprising an airfoil and a radially inner vane platform. A seal arrangement includes a static seal inward from the inner vane platforms and having a radially extending face plate, first and second cylindrical seal walls extending from outer and inner ends of the annular face plate, an annular seal plate extending radially from the second cylindrical seal wall, and an angel wing extending between the first cylindrical seal wall and the annular seal plate to define a first annular cavity and a second annular cavity. Circumferentially spaced cut-outs define passages through the annular seal plate between the first and second annular cavities and are aligned with fasteners that attach the annular face plate to a support ring for supporting the inner vane platform.

    Interstage seal housing optimization system in a gas turbine engine

    公开(公告)号:US10215044B2

    公开(公告)日:2019-02-26

    申请号:US15325527

    申请日:2014-08-08

    Abstract: An interstage seal system (10) for adjusting the position of an interstage seal during operation of a gas turbine engine (14) to increase efficiency of the seal (12) is disclosed. The interstage seal system (10) may include a interstage seal housing (16) formed from a circumferentially extending housing having a seal (12) positioned on a radially inward surface (18) of the interstage seal housing (16). The interstage seal housing (16) may biased radially outward via one or more springs (20) to bias the radially inward surface (18) of the interstage seal housing (16) outwardly. The interstage seal housing (16) may reside in an interstage housing receiving cavity (68). The cavity (68) may be supplied with gases at a higher pressure than on the other side (24) of the seal housing (16) during turbine engine operation. As such, the interstage seal housing (16) is forced radially inwardly to close the gap (26) within the seal (12) as the high pressure force directed radially inward overcomes the spring bias directed radially outward.

    METHOD FOR MODULATING A TURBINE COOLING SUPPLY FOR GAS TURBINE APPLICATIONS

    公开(公告)号:US20230122896A1

    公开(公告)日:2023-04-20

    申请号:US17906756

    申请日:2020-03-24

    Abstract: A method of modulating a cooling supply in a gas turbine engine includes providing the engine comprising a compressor section and a turbine section and including a cooling flow circuit, the cooling flow circuit supplying a cooling air flow from a compressor cavity in the compressor section to a blade ring cavity in the turbine section, wherein the cooling flow circuit includes a main line with a full capacity valve, measuring a first pressure in the blade ring cavity, measuring a second pressure in the compressor cavity, adjusting, by a control system, the opening of the full capacity valve to control the cooling air flow through the main line in order to maintain a target pressure ratio, wherein the pressure ratio defined as a ratio of the first pressure to the second pressure. The method is performed in an ambient temperature operating range of the engine.

    INTERSTAGE SEAL HOUSING OPTIMIZATION SYSTEM IN A GAS TURBINE ENGINE

    公开(公告)号:US20170145847A1

    公开(公告)日:2017-05-25

    申请号:US15325527

    申请日:2014-08-08

    Abstract: An interstage seal system (10) for adjusting the position of an interstage seal during operation of a gas turbine engine (14) to increase efficiency of the seal (12) is disclosed. The interstage seal system (10) may include a interstage seal housing (16) formed from a circumferentially extending housing having a seal (12) positioned on a radially inward surface (18) of the interstage seal housing (16). The interstage seal housing (16) may biased radially outward via one or more springs (20) to bias the radially inward surface (18) of the interstage seal housing (16) outwardly. The interstage seal housing (16) may reside in an interstage housing receiving cavity (68). The cavity (68) may be supplied with gases at a higher pressure than on the other side (24) of the seal housing (16) during turbine engine operation. As such, the interstage seal housing (16) is forced radially inwardly to close the gap (26) within the seal (12) as the high pressure force directed radially inward overcomes the spring bias directed radially outward.

Patent Agency Ranking