Abstract:
A gas turbine engine has a converging duct that has combustion products flow at low mach speeds through a first portion and a high mach speeds through a second portion. The converging duct has two types of cooling schemes formed. One type of cooling scheme is beneficial for the low mach speed combustion product flow and one type of cooling scheme is beneficial for the high mach speed combustion product flow. The two cooling schemes are blended together in order increase the efficiency of the cooling of the converging duct.
Abstract:
A gas turbine engine has a non-axially symmetric main duct portion (113). The non-axially symmetric main duct portion (113) may provide improved aerodynamics, heat load, structural strength and engine compactness.
Abstract:
A gas turbine engine component (10), having: a base layer (60) including an array (110) of pockets (52) separated by raised ribs (36), and a film cooling hole (70) through the base layer in each pocket; and a cover sheet (62) diffusion bonded to the raised ribs and including an impingement hole (72) for each pocket of the array of pockets. The raised ribs include a thickness (104) that is less than half of a smallest dimension (96) of the pocket. The component is configured to receive combustion gases from a combustor and accelerate and deliver the combustion gases onto a first row of turbine blades without a turning vane.
Abstract:
The present disclosure provides a gas turbine combustor liner (34) comprising an outer surface (38) and an inner surface (36), a plurality of film cooling holes (44) through a thickness of the gas turbine combustor liner (34), and a plurality of resonator boxes (32) affixed to the outer surface (38) of the gas turbine combustor liner (34). The film cooling holes (44) extend circumferentially around the gas turbine combustor liner (34) and comprise a first set of holes (56) having a first axial row spacing X and a second set of holes (58) having a second axial row spacing X′. The second set of holes (58) is formed in the gas turbine combustor liner (34) in a downstream direction relative to the first set of holes (56). The second axial row spacing X′ is greater than the first axial row spacing X.
Abstract:
A combustion system in a combustion turbine engine is provided. The system may include a combustor wall fluidly coupled to receive a cross-flow of combustion products. The combustor wall may include a plurality of cooling air conduits. An injector assembly may be in fluid communication with the cooling fluid conduits to receive cooling fluid that passes through the cooling fluid conduits. Injector assembly includes means for injecting a flow of the cooling fluid into the combustion stage. The flow of the cooling fluid may be arranged to condition interaction of a flow of reactants injected to admix with the cross-flow of combustion products.
Abstract:
Method and computer-readable model for additively manufacturing a ducting arrangement (20) in a combustion stage are provided. The ducting arrangement may include a combustor wall (40) in a combustion stage fluidly coupled to receive a cross-flow of combustion products (21). An injector assembly (12) may be in fluid communication with cooling fluid conduits (46) in the combustor wall to receive cooling fluid that passes through the cooling fluid conduits. The injector assembly may include means for injecting (24, 25, 26) a flow of the cooling fluid (22) arranged to condition interaction of a flow of reactants (19) injected with the cross-flow of combustion products. Respective duct components or the entire ducting arrangement may be formed as a unitized structure, such as a single piece using a rapid manufacturing technology, such as 3D Printing/Additive Manufacturing (AM) technologies.
Abstract:
Method for constructing impingement/effusion cooling features in a component of a combustion turbine engine is provided. A pocket 102 may be arranged between an outer wall 104 and an inner wall 106 of the component. A lasing device 108 allows drilling through the component to form an effusion hole 110. The lasing device further allows welding closed an opening 117 formed at outer wall 104 of the component during the drilling with the lasing device through the component. Lasing device 108 further allows drilling through outer wall 104 of the component to form an impingement hole 118 for the impingement/effusion cooling feature. The proposed methodology in a multi-panel arrangement, for example, eliminates a need of having to pre-drill such holes in individual panels prior to the bonding and forming of the component, which overcomes various drawbacks commonly associated with such pre-drilling.
Abstract:
Method for constructing impingement/effusion cooling features in a component of a combustion turbine engine is provided. A pocket 102 may be arranged between an outer wall 104 and an inner wall 106 of the component. A lasing device 108 allows drilling through the component to form an effusion hole 110. The lasing device further allows welding closed an opening 117 formed at outer wall 104 of the component during the drilling with the lasing device through the component. Lasing device 108 further allows drilling through outer wall 104 of the component to form an impingement hole 118 for the impingement/effusion cooling feature. The proposed methodology in a multi-panel arrangement, for example, eliminates a need of having to pre-drill such holes in individual panels prior to the bonding and forming of the component, which overcomes various drawbacks commonly associated with such pre-drilling.
Abstract:
A fuel burner system (10) configured to inject a liquid fuel and a gas fuel into a combustor (12) of a turbine engine (14) such that the engine (14) may operate on the combustion of both fuel sources (20, 24) is disclosed. The fuel burner system (10) may be formed from a nozzle cap (16) including one or more first fuel injection ports (18) in fluid communication with a first fuel source (20) of syngas and one or more second fuel injection ports (22) in fluid communication with a second fuel source (24) of natural gas. The fuel burner system (10) may also include an oil lance (26) with one or more oil injection passages (28) that is in fluid communication with at least one oil source (30) and is configured to emit oil into the combustor (12). The oil lance (26) may include one or more fluid injection passages (32) configured to emit air to break up the oil spray and water to cool the combustor (12), or both.
Abstract:
A pilot fuel nozzle for a combustor includes an igniter forming a central body extending along a longitudinal center of the nozzle. A nozzle tip includes a plurality of circumferentially spaced fuel passages and a plurality of circumferentially spaced air passages extending to an outer side of the nozzle tip. The central body extends through a center of the nozzle tip for producing a spark to ignite a fuel/air mixture adjacent to the nozzle tip. A plurality of fuel tubes extend along the central body, each of the fuel tubes having an outlet end engaged on the nozzle tip for delivery of fuel from the nozzle tip into a combustion chamber of the combustor An outer sleeve surrounds the fuel tubes and defines an annular space in fluid communication with the air passages of the nozzle tip between the outer sleeve and the central body