Abstract:
A color filter includes a substrate, a black matrix located on the substrate, a color layer formed on the substrate, and an over coat layer formed on the substrate to cover the black matrix and the color layer. A plurality of photo spacers are located corresponding to the black matrix, and engage with the over coat layer tightly. Therefore, an IPS LCD using the above-mentioned color filter has a steady configuration, and a cell gap of the LCD is consistent.
Abstract:
A color filter includes a plurality of pixels, each of which includes a red, a green, and a blue sub-pixel alternately arranged in a first direction, edges of the red, green, and blue sub-pixels having bent portions. The sub-pixels of a same color are continuously arranged in a second direction being substantially perpendicular to the first direction. Displaying color images of a liquid crystal display using the color filter may be better than that of the liquid crystal display using the typical color filters. The yield ratio in mass production of the liquid crystal display using the color filter is lower than that of the liquid crystal display using the typical color filters. In addition, a liquid crystal display using the color filter is disclosed.
Abstract:
A color filter (100) includes pixels (110), each pixel including three sub-pixels (111), and each sub-pixel including a reflection section (R) and a transmission section (T). In each pixel, the transmission sections and the reflection sections are alternately arranged along each row of the sections and along each column of the sections. The alternating arrangement of the transmission sections and the reflection sections of the pixels can provide a uniform pattern of hue balance over the whole display area. Furthermore, in various embodiments described, different optical thicknesses of the transmission sections and the reflection sections (or color layers of the reflection sections) can provide uniform hue over the whole display area.
Abstract:
A preferred method for manufacturing a color filter includes the steps of: providing a color filter substrate (60) and forming a black matrix (31) on the substrate by using a patterned mask (21); providing another three patterned masks (23, 25, 27) and respectively forming three kinds of interferential layers (33, 35, 37) for separately displaying red, green and blue. The materials of the deposited films of the preferred method as described are metal-oxide materials, which improve the heat resistance and color reproduction of the color filter. Further, such materials decrease the time needed to perform the entire process, because the thickness and quantity of the deposited films can be readily controlled based on the optical simulation data obtained beforehand.
Abstract:
An LCD device (300) includes a first substrate (30), a second substrate (40) disposed parallel to the first substrate, and a liquid crystal layer (33) having liquid crystal molecules interposed between the substrates. The first substrate includes a transparent plate (31), a color filter layer (38) formed on the transparent plate opposite to the second substrate, and a common electrode (39) formed on the color filter layer. The common electrode has a plurality of protruding portions (391) protruding toward the second substrate. The second substrate has pixel electrodes (35) opposite to the first substrate. The pixel electrodes define slits (351) therebetween. This configuration ensures to generate a symmetric electric field (E) distributing in several directions between the common and pixel electrodes so as to form several domains.
Abstract:
A color filter (100) includes pixels (110), each pixel including three sub-pixels (111), and each sub-pixel including a reflection section (R) and a transmission section (T). In each pixel, the transmission sections and the reflection sections are alternately arranged along each row of the sections and along each column of the sections. The alternating arrangement of the transmission sections and the reflection sections of the pixels can provide a uniform pattern of hue balance over the whole display area. Furthermore, in various embodiments described, different optical thicknesses of the transmission sections and the reflection sections (or color layers of the reflection sections) can provide uniform hue over the whole display area.
Abstract:
A method for manufacturing a color filter (30) includes: preparing a transparent substrate (34); forming a black matrix (33) on the transparent substrate, the black matrix including an antireflection layer (332) formed on the transparent substrate and a light-shielding layer (333) formed on the antireflection layer, the antireflection layer including a first antireflection film (3321) having a first index of refraction, and a second antireflection film (3322) having a different second index of refraction, the black matrix defining a plurality of apertures arranged in an array; and coating a color resin layer (32) on the transparent substrate and the black matrix.
Abstract:
A color filter for a transflective liquid crystal display (LCD) includes a transparent substrate (2011), a color filter layer (2012) covering the transparent substrate, a transparent layer (2013) covering the color filter layer, and a transparent electrode (2014). The color filter layer comprises a plurality of black matrix units (2016) and a plurality of color units (2015). Each color unit has two first portions (r) that correspond to a reflective mode, and a second portion (t) that corresponds to a transmissive mode. The second portion is preferably twice as thick as the first portions. A transflective LCD using the color filter is also described.
Abstract:
A color filter (401) for a transflective liquid crystal display (LCD) includes a transparent substrate (4011), a color filter layer (4012) covering the transparent substrate, a transparent electrode (4013) covering the color filter layer, and a transparent layer (4014). The color filter layer comprises a plurality of color units (4015). Each color unit has a first overlapping portion (4015a), a second overlapping portion (4015b) and a middle portion (4015c) therebetween, and the first overlapping portions of color units are formed on second overlapping portions of contiguous color units to form a plurality of light blocking areas, the middle portion of each color unit has a first portion (r) that corresponds to a reflective mode, and a second portion (t) that corresponds to a transmissive mode. The second portion is thicker than the first portion. A transflective LCD using the color filter is also described.
Abstract:
A color filter and a method for manufacturing the same are provided. The color filter includes a polarizer matrix (202), which is patterned in accordance with the pixel arrangement of a liquid crystal display device. The polarizer matrix (202) is made of a thin crystal film material, which may linearly polarize incident light along one direction. By incorporating with a polarizer film (206), the polarizer matrix (202) becomes an effective black matrix. A thinner black matrix may thus be produced, and the manufacturing processes of the color filter are simplified.